Categories
Productivity Resilience Resources

From supply chains towards manufacturing ecosystems: A system dynamics model

Research overview

Rapid market changes call for demand-driven collaborations in manufacturing, which trigger supply chain evolution to more distributed supply structures.

This paper explores the system dynamics of the largest European aerospace manufacturer’s supply chain. The authors conceptualise a manufacturing ecosystem by observing the impacts of supplier development, digital platforms, smart contracting, and Industry 4.0 on demand-driven collaborations in time.

The research team offers further contributions to the literature on ecosystem strategy, particularly for regulated industries, by disclosing the role of demand-driven collaborations in supporting the ecosystems’ growth. This paper also provides manufacturing firms with an open-access tool to exemplify their ecosystem development and produce initial training datasets for AI/ML algorithms, supporting further analytics.

This research was conducted by Dr. Nikolai Kazantsev (IfM, University of Cambridge), Oleksii Petrovskyi (National University of Kyiv-Mohyla Academy), Professor Julian M. Müller (Seeburg Castle University, Austria and Erfurt University of Applied Sciences, Germany). This work was supported by the UKRI Made Smarter Innovation Challenge and the Economic and Social Research Council via InterAct [Grant Reference ES/W007231/1].

For further discussions or potential applications/collaborations, please contact Nikolai Kazantsev.

https://doi.org/10.1016/j.techfore.2023.122917

Categories
InterAct Blog

How do we create manufacturing ecosystems from supply chains?

Introduction

The term ‘ecosystem’ is derived from biology, capturing a system of entities interacting and depending on each other and reacting to outside challenges and requirements. Business ecosystems represent the intense relationships between interlinked multilateral, complementary actors or partners interacting for value creation (Adner, 2017; Hannah and Eisenhardt, 2018).

We define a manufacturing ecosystem as a subclass of business ecosystems where supply chain firms arrange demand-driven collaboration in all directions (e.g., with partners, buyers, and even customers), thus competing with large Tier-1 firms for direct manufacturing orders, gaining these orders, fulfilling them and capturing profits. This changes the topology of a hierarchical supply chain into a distributed manufacturing ecosystem, where Tier-1s do not arrange subcontracting of the awarded orders.

In the conventional supply chains, Small- and medium-sized enterprises (SMEs) represent most suppliers worldwide, accounting for 70% of jobs and generating up to 60% of value added (OECD, 2017). For example, the aerospace supply chain starts with the OEM, which places orders in a ‘Calls for Tenders’ (CfTs), organizes tendering processes (often leading to Tier-1s) and awards orders to the team that best matches the requirements. In this industry, SMEs can potentially provide components and services at multiple supply chain levels, but they often miss the scale, scope, standardization or technologies to play a more active role in tendering (Müller et al., 2018). Also, SMEs have reduced ability to act as suppliers due to powerful Tier-1 companies (Schirrmann & Drat, 2018). 

However, what if demand-driven collaborations between SMEs are supported?

We simulate the application of Industry 4.0, Digital platforms, Smart contracts, and Supplier development programs (Kazantsev et al., 2022) and explore the growth of the manufacturing ecosystem from a conventional supply chain. We used system dynamics to simulate these changes and provide insights for manufacturing firms and policymakers about the desired level of support (Sterman, 2000; Akkermans and Wasserhove, 2018). 

An interactive dashboard has been developed that allows the testing of ecosystem development:

Findings

1. Supplier development and digital platforms make marketplaces more transparent so that SMEs can see more calls for tenders

Supplier development programmes and digital platforms are needed to help SMEs identify more calls for tenders and potential partners for collaboration.

2. The collaboration experience and smart contracts reduce uncertainty levels and enable SMEs to submit more collaborative tenders

Participating in tendering would also enable SMEs to learn how to fulfil orders; therefore, allowing some quotas is helpful. The more firms collaborate on tenders, the lower the level of uncertainty in the market. New technologies, such as smart contracting, indirectly increase the number of submitted tenders and further support the development of a trustworthy business environment.

3. Technological support for contracting and coordination reduces the order execution queue and supports the growth of a manufacturing ecosystem 

Insufficient contracting and coordination reduces order fulfilment efficiency and calls for digitalization  (Kazantsev et al., 2023). Adopting smart contracting and Industry 4.0 increases the ability of SME collaboration to execute the awarded orders in time. Specifically, if we double investments into smart contracting and Industry 4.0 every year, the number of delayed orders grows until the 5th year but then starts falling. In the 6th year, 48 calls for tenders will be available (with a 15 % quota), seven orders out of which will be fulfilled the same year, and six orders from the previous year’s queue. In this case, the order execution rate reaches a plateau – executing all awarded orders. Year 5 is a breakeven point when order execution rate, delayed, and executed orders intersect.

Study implications 

Demand-driven collaborations play a critical role in unfolding manufacturing ecosystems. In the early stages of such transitions, investments in collaboration enablers are critical to support ecosystem growth. Thus, we recommend:

  • investing in supplier development and digital platforms as early as possible
  • enabling quotas for SMEs in tendering   
  • increasing digitalization of contracting and coordination to support the efficiency of demand-driven collaborations

https://doi.org/10.1016/j.techfore.2023.122917

References

Adner, R. (2017). Ecosystem as Structure. Journal of management, 43(1), 39-58.

Akkermans, H., & Van Wassenhove, L. (2018). A dynamic model of managerial response to grey swan events in supply networks. International Journal of Production Research, 56(1-2), 10-21.

Hannah, D. P., & Eisenhardt, K. M. (2018). How firms navigate cooperation and competition in nascent ecosystems. Strategic management journal, 39(12), 3163-3192.

Kazantsev, N., Petrovskyi, O., & Müller, J. M. (2023). From supply chains towards manufacturing ecosystems: A system dynamics model. Technological Forecasting and Social Change, 197, 122917.

Kazantsev, N. (2022). Supporting SME Collaborations in Low-Volume High-Variability Manufacturing. United Kingdom:The University of Manchester.

Kazantsev, N., Pishchulov, G., Mehandjiev, N., Sampaio, P., & Zolkiewski, J. (2022). Investigating barriers to demand-driven SME collaboration in low-volume high-variability manufacturing. Supply Chain Management: An International Journal, 27(2), 265-282.

Kazantsev N., DeBellis, M., Quboa Q., Sampaio P., Mehandjiev N., &  Stalker I. (2023). An ontology-guided approach to process formation and coordination of demand-driven collaborations, International Journal of Production Research, DOI: 10.1080/00207543.2023.2242508

Müller, J. M., Buliga, O., & Voigt, K.-I. (2018). Fortune favors the prepared: How SMEs approach business model innovations in Industry 4.0. Technological Forecasting and Social Change, 132, 2-17.

OECD. (2017). Enhancing the contributions of SMEs in a global and digitalized economy.

Schirrmann, A., & Drat, C. (2018). D6.1: Collaboration rules & procedures specification. Retrieved 16.12.2021 from https://6c97d07e-2d66-4f14-9c19-8c5872c4c3ba.filesusr.com/ugd/
2512a7_da7dba0ebb164182803d70e03fe6773b.pdf

Schmidt, M. C., Veile, J. W., Müller, J. M., & Voigt, K. I. (2023). Industry 4.0 implementation in the supply chain: a review on the evolution of buyer-supplier relationships. International Journal of Production Research, 61(17), 6063-6080.Sterman. (2000). Business Dynamics: Systems Thinking and Modeling for a Complex World McGraw Hill.

Categories
People Productivity Resilience Resources Sustainability

InterAct Conference 2023

Overview

As we embark on the next stage of our industrial evolution, digitalisation will shape the future of our economy, manufacturing ecosystem, and workplace. Digital technologies can enable us to create the future we want and move beyond consumption driven economic growth.

Our challenge is to create a digital manufacturing future that meets our net-zero ambitions, whilst being resilient and productive. Thus, ensuring that everyone has the things that they need, at a price that they can afford, without damaging the environment or society.

To create the digital manufacturing future we want, we first need to know how that can be achieved, we need to explore the possible and work together to realise these goals. In order to combine our expertise from the broadest range of perspectives around this common goal, we need to InterAct.

How did the InterAct conference benefit attendees?

  • Gaining actionable human insights into the future manufacturing environment.
  • Networking and building relationships with cross-sector experts interested in creating a positive, forward-thinking vision for UK industry.
  • Building narrative development skills to enhance the reach of messaging in the digital environment.
  • The opportunity to take part in a collaborative workshop on the theme ‘How do we create the digital manufacturing futures we want to see, together’.
  • Engagement with a panel of highly regarded speakers from the world of manufacturing, policy, and academia during an interactive Q&A session.

Speakers

We were delighted to welcome a roster of world-leading speakers, who shared unique insights and perspectives on their areas of expertise in relation to the theme of ‘Creating the digital manufacturing future we want’.

Our speakers were drawn from a wide range of backgrounds across industry, policy, think-tanks, and academia. Together they represent a diverse collection of voices that we want to draw into the wider conversation about what it will take to build a future that delivers for everyone.

Peter Cheese

Keynote Speaker

Chief Executive – Chartered Institute of Personnel and Development (CIPD)

Peter is the CEO of the CIPD, the professional body for HR and People Development. Since January 2019, he has been co-chair of The Flexible Working Task Force, a partnership across government departments, business groups, trade unions and charities, to increase the uptake of flexible working. He is also Chair of Engage for Success and the What Works Centre for Wellbeing.

Peter writes and speaks widely on the development of HR, the future of work, and the key issues of leadership, culture and organisation, people and skills. In 2021, his second book ‘The New World of Work’ was published, exploring the many factors shaping work, workplaces, workforces and our working lives, and the principles around which we can build a future that is good for people, for business and for societies. 

Prior to joining the CIPD in 2012 Peter was Chair of the Institute of Leadership and Management, an Executive Fellow at London Business School, and held a number of Board level roles. He had a long career in consulting at Accenture working with organisations around the world, and in his last seven years there was Global Managing Director for the firm’s human capital and organisation consulting practice.

He is a Fellow of the CIPD, a Fellow of AHRI (the Australian HR Institute), the Royal Society of Arts, and the Academy of Social Sciences. He’s also a Companion of the Institute of Leadership and Management, the Chartered Management Institute, and the British Academy of Management. He holds honorary doctorates from Bath University, Kingston University and Birmingham City University, and is a Visiting Professor at Aston University.



Ben Armstrong

Keynote Speaker

Executive Director – Massachusetts Institute of Technology (MIT) – Industrial Performance Center

Ben Armstrong is the executive director and a research scientist at MIT’s Industrial Performance Center, where he co-leads the Work of the Future initiative. His research and teaching examine how workers, firms, and regions adapt to technological change. His current projects include a working group on generative AI and its impact on work, as well as a book on American manufacturing competitiveness. He received his PhD from MIT and formerly worked at Google Inc.



David Rea

Speaker – Future of the Economy

Chief Economist – JLL

David is Chief Economist EMEA at JLL, one of the world’s largest commercial real estate services companies. At JLL, David advises the firm’s leadership and its clients on how the economy is evolving and the impact it will have on real estate. Prior to JLL, David spent six years as Chief Economist at Jaguar Land Rover and also led the company’s work to prepare for Brexit. He has previously held other economist positions at Capital Economics, RBS, and the Bank of Sierra Leone.


Professor Vania Sena

Speaker – Future of the Economy

InterAct Network – Future of the Economy: Principal Investigator
Chair in Entrepreneurship and Enterprise – University of Sheffield

Professor Sena’s first degree was awarded with laude by the University of Naples, Federico II, Naples, Italy; her postgraduate studies in Economics were carried out at the University of York, UK, where she was awarded both the MSc and the DPhil in Economics.

Her research focuses mainly on productivity growth, both at the micro and macro level with an emphasis on innovation, human capital and intellectual property. Her most recent research looks at the relationship among innovation activities,trade secrets and total factor productivity. She is a member of the Operational Society General Council and Board. She has been a visiting fellow at Harvard University, MA and at Rutgers University, NJ.

Vania is leading the InterAct workstream ‘The Future of the Economy’, which is examining the impact that the uptake of industrial digital technology in manufacturing will have on the wider economy and the implications of of this.


Dr. Adrienne Houston

Speaker – Future of Work

Company Director – Eurovacuum

Dr Adrienne Houston is Company Director at Eurovacuum Products Ltd. She is a Mechanical Engineering specialising in high vacuum and low pressure compressor systems and vacuum evaporator for the biogas, chemical and pharmaceutical industries.  

To complement her professional work, Adrienne is a keen promoter and champion of women in engineering, diversity and inclusion. In 2019 she was appointed by the Royal Academy of Engineering for the role of Diversity and Inclusion Visiting Professor at the University of Birmingham. She is a board member at the Research, Information and Knowledge committee at the Engineering Professors Council and Honorary Visiting Design Professor at the School of Engineering, University of Leicester. 


Professor Jillian MacBryde

Speaker – Future of Work

InterAct Network Co-director
Professor of Innovation and Operations Management – University of Strathclyde

Jill MacBryde is Professor of Innovation and Operations Management at Strathclyde University where she is also Director of the Hunter Centre for Entrepreneurship. Jill is Co-Director of the ESRC Made Smarter Network Plus, InterAct network, which aims to bring insights from the social sciences to support the innovation and diffusion of digital technologies that will result in a stronger, more resilient, manufacturing base.

The theme throughout Jill’s work is operations management in changing environments and her current research projects include productivity in manufacturing, the impact of Covid on UK manufacturing, and the future of manufacturing work. Jill also works with policy makers and the public sector. She is currently a member of the Innovate UK/ESRC Innovation Caucus and a member of the Innovate UK Future Flight Advisory Board.


Matt Tootle

Speaker – Future of Digital Manufacturing Ecosystems

Senior Business Analyst – Aerogility

Matt is an energetic and passionate leader who joined Aerogility with over 16 years’ experience in defence aerospace, primarily within support engineering and manufacturing. Matt’s specialisms include capturing and shaping complex customer requirements, designing and developing deliverable solutions and translating technical problems to non-technical individuals. Matt has extensive experience working with international customers and colleagues to deliver value to their operations. Matt’s current role sees him working across a variety of sectors to deliver innovative, model-based AI solutions to enable customers to better operate, sustain and optimise platforms, services and infrastructure.


Sue Williams

Speaker – Future of Digital Manufacturing Ecosystems

Managing Director – Hexagon Consultants

Sue Williams is a strategic and focused Supply Chain Director with over 25 years’ experience in multiple industries including automotive, aerospace, defence and FMEG as well as aftermarket and aftercare support.  Sue’s specialisms include supply chain design and modelling, inventory planning, demand management, S&OP and supply planning.  Sue has worked with organisations such as Jaguar Land Rover, Dyson, GKN and Meggitt among others, to deliver sustainable, high value change to their supply chains.  Sue was also the Head of Supply Chain for the Vaccine Taskforce, responsible for supply chain risk and resilience and the inbound modelling and planning for the vaccine supply.


Martin Bach

Speaker – Future of Digital Manufacturing Ecosystems

Martin Bach’s background is in process engineering and manufacturing management.  He has extensive business management experience in the UK, Europe and the US, running a wide range of businesses in the automotive and industrial sectors.  Most recently he was Managing Director of Cooksongold, the UK’s leading supplier of jewellery making materials and products.


Professor Janet Godsell

Speaker – Future of Digital Manufacturing Ecosystems

InterAct Network Co-director
Dean of Loughborough Business SchoolLoughborough University

Jan Godsell is Dean of Loughborough Business School and Professor of Operations and Supply Chain Strategy at Loughborough University. Her work focuses on the pursuit of more responsible consumption and production through the alignment of product, marketing, and supply chain strategy with consumer needs. Jan’s work focuses on the design of end-to-end supply chains to enable, responsibility, sustainability, resilience and productivity.

Jan is the workstream lead for ‘The Future of Digital Manufacturing Ecosystems’. This will examine how to develop more sustainable manufacturing business models, supply chains, and the role of innovative digital technologies (IDTs) in facilitating this shift.


Ved Sen

Keynote speaker

Head of Business Innovation – Tata Consultancy Services (TCS) UK

Ved is passionate about the impact of technology on business, culture, and society. He enjoys speaking and writing about technology and the future. He writes a weekly innovation newsletter, and is a regular speaker at industry forums. He has been a guest lecturer at the HSE Ireland Masters in Digital Healthcare Programme in Dublin for the past 3 years, and a regular speaker on AI and future systems.

Ved works as the Head of Business Innovation for Tata Consultancy Services UK. His primary focus is to help drive future thinking conversations with clients in solving tomorrow’s problems. He has been working with and advising senior clients across retail, travel, education, healthcare, financial services, public sector, and other businesses. Ved runs an innovation team in London and is leading the design and set up of Pace Port London. Currently his work spans areas such as reinventing social care for the elderly, connected homes and environments, and urban mobility, Generative AI, and more. Over the past 20+ years, Ved has been working on emerging technologies, and their adoption into organisations. An avid writer and regular speaker, Ved’s book “Doing Digital” was released in January 2023, and he writes a regular innovation newsletter.  


Fhaheen Khan

Panellist

Senior Economist – Make UK

Fhaheen Khan is a Senior Economist at Make UK, the manufactures organisation. His role primarily focusses on monitoring and evaluating the economic performance of manufacturers, which is published in a quarterly outlook report. In addition, Fhaheen’s role covers a myriad of topics relevant to manufacturing to advise Government bodies to develop policy with a focus on tax, investment and the business environment and is a regular commentator on public statistics.


Ben Farmer

Panellist

Deputy Director – Made Smarter Innovation Challenge

Ben is the Deputy Director of the Innovate UK-led £300 million Made Smarter Innovation Challenge; a collaboration between UK government and industry designed to support the development and novel application of industrial digital technologies.

Prior to this, Ben held positions at HiETA Technologies, Airbus Group, University of Bath and Cobham. He is also founder of Added Lightness, a technology strategy consulting business, and Atherton Bikes, which brings together multiple-world champion and world cup winning athletes with the latest composite and additive manufacturing technologies.

Ben holds a degree in Materials Science and Engineering and an MBA from the University of Bath, a PhD in Materials Science and Metallurgy from the University of Cambridge and is a Chartered Engineer.

Categories
People Productivity Resilience Resources Sustainability

Future of Digital Manufacturing Ecosystems – 2040 scenarios

Research overview

Disruption, digital innovation, new business models… the world of manufacturing is changing rapidly, perhaps faster than ever before. To adapt and survive, businesses must anticipate changes, identify opportunities and make informed decisions.
 
So, how can you be ready for the changes that lie ahead? How can you pivot to be equally productive and sustainable, delivering progress with purpose?
 
The InterAct Future of Digital Manufacturing Ecosystems research team has put together a vital report that brings you the information you need, at your fingertips, outlining potential future scenarios and the associated opportunities for the manufacturing world.
 
Future of Digital Marketing Ecosystems – 2040 Scenarios

These scenarios map out four potential alternatives for the digital manufacturers of tomorrow, including:

  • Productivity Powerhouse
  • Flexibility as Standard
  • Sustainability Champion
  • Happy and Sustainable Workforce

Download the report to find out more about how the most useful measure of sustainable progress is total factor productivity, which accounts for inputs beyond labour – such as materials, energy and administrative time – to compare them against total outputs. You will also learn how these inputs can be measured against one another, and how businesses can begin working towards achieving them.

As the report shows, by considering the human factors behind digitalisation today, you’ll be much better placed to build true resilience into your business tomorrow.

This research was conducted by Dr. Wanrong Zhang, Professor Janet Godsell and Dr. Kamran Chatha (Loughborough University). This work was supported by the UKRI Made Smarter Innovation Challenge and the Economic and Social Research Council via InterAct [Grant Reference ES/W007231/1].

For further discussions or potential applications/collaborations, please contact Jan Godsell.

Categories
InterAct Blog

The three pillars of technology adoption in the agri-food industry: provision, people and practicality

There are terms we hear constantly in the agriculture and food sectors right now – industry 4.0, smart processes, robotic automation, Internet of Things (IoT) and Artificial Intelligence (AI) are all common buzzwords. However, while understanding the benefits of these formative ideas is relatively straightforward, putting them into practice relies on the collection, utilisation and analysis of data – data that needs to be digitally available to make this possible.

Adopting solutions that drive forward these tech advancements offers great potential in leveraging growth and productivity, but there is one sticking point. The UK agri-food industry is notoriously slow in adopting new technologies.

Of course, extraordinary events such as the Covid-19 pandemic, have accelerated the adoption of some digital technologies out of necessity, but the overall feeling has traditionally been one of reluctance, with various contributory factors including cost, resource, and general attitudes.

How to convince the sector to embrace change

There are three pillars that need to be considered to provide agri-food businesses with the confidence to adopt technology: provision, people, and practicality. These will in turn enable businesses to access the benefits that digitisation and data connectedness will bring. Let’s break them down one at a time.

Provision

It’s not that technologies haven’t been developed and tested – they have. It’s that less attention has been paid to actually provisioning tech specifically for the agri-food industry. Often technologies that make their way into the agri-food sector have been developed with a use case or other industry in mind. Only after this is the potential for it to be applied within agri-food production and/or manufacturing recognised.

Look at blockchain – its origins are in fintech, designed to trade digital currency bitcoin without the need for a trusted authority such as a bank. But repurpose this technology into the agri-food space, where it was pivoted to be an emerging technology to disincentivise and prevent fraud, and it’s clear it isn’t completely fit for purpose in its legacy form.

Why? Because the decentralised nature of blockchain means that using a typical payment model based on the number of transactions, where there are many transactions, is just not possible in a high volume/low margin sector like agri-food. So, in reality it, is just too costly to roll out. An obvious takeaway here is that if technologies are to be adapted and provisioned with the agri-food sector in mind, then it is vital that the technology providers have an in-depth knowledge of the agri-food sector.

People

It isn’t just provisioning where technology adoption currently falters. We need to shine a spotlight on how we get people to buy in. The breakdown here might not be where you think. While the benefit technology can bring to businesses is often understood on a macro level within the food industry, particularly by those in thought leadership positions, it is the onboarding of this technology’s main users that has proved more difficult.

This is not generally due to the people, but because of the change it involves. The benefits of this new way of working are not always immediately or overtly obvious to users. In fact, as a technology provider, I am often met with statements of resistance, such as: “because this is the way it has always been done”. However, this struggle to accept new technologies is often associated with a fear of change and being replaced by machines. That’s why it is so important that technology providers acknowledge these concerns and take them into consideration, reassuring users of the benefits during implementation.

Practicality

Addressing the practical aspects of a digital way of working within agri-food is the final part of making technology adoption more accessible. The responsibility here lies with the tech providers.

The processes, changes, and practical steps required to implement a new tech into a business are often confused and even misunderstood, even by the technology companies themselves.

In general, the agri-food sector operates on a high-volume low-margin model, meaning that processes are tightly refined and controlled. The industry has worked hard over the last 20+ years to bring about operational efficiencies through automation, so that cost savings or profitability can be achieved.

During this period there has been less of a focus on digitising data and the value it could bring through actionable insights. When disruptive technologies enter this process, they need to do so with ease and not impact operations or processes. In addition, they need to add value rather than create costs for businesses. Furthermore, these technologies need to be able to cope with the intricacies and nuances that exist in the production and manufacturing environments. Put simply, sometimes technology will not be plug and play – especially in its infancy. 

The outcome here is that the inherent benefits of digitisation are not immediately obvious, as they would be with operation efficiency gains. It is critical that technology providers take the time to understand the specific business where they are attempting to implement technologies and provide solutions that will support and enhance the business.

The sector, the business & the people

Ultimately, an understanding of the many aspects of the agri-food sector is critical for technology providers. Without a clear view of not just the supplier-customer relationships and their dynamics, but also the supply chain, with its global complexity and fragmented nature, and the many actors involved in the supply chain, there are sure to be issues. A grasp of all these issues assures an appreciation of the intricacies involved in technology adoption in this sector. It also ensures that technology providers can recognise any stumbling blocks ahead, while partnership with customers enables the provision of technology that is fit for purpose.

As a technology provider, Foods Connected works specifically on implementing digital solutions with Food Business Operators. The implementation of these solutions in various environments requires knowledge and understanding of how each business operates, accompanied by knowledge about the wider complexities of the sector in general. That’s why our teams have all worked in the industry and understand the intricacies of each step of the supply chain process. Our people are experts – and that’s what we need to take technology adoption forward in the agri-food industry.

After all, technology adoption and implementation are inherently coupled with people – and one cannot exist without the other.

Want to learn more about digitalisation in the agri-food industry? Watch our recorded InterAct x Foods Connected webinar: Overcoming barriers to digitalisation: adding value in the agri-food sector
About the author

Stephanie is a Senior Implementation Manager at Foods Connected. With 11 years’ experience in academia, food manufacturing and food-tech and an undergraduate degree in Food Science and a PhD in Food Supply Chain Management, Stephanie has spent her career working in food manufacturing environments in a R&D capacity, as well as working on and managing several multi million pound research projects while working for Queen’s University Belfast. Stephanie has worked with Foods Connected for the last 2.5 years, implementing, managing and delivering successful digital transformation projects within the food industry.

Categories
InterAct Blog

Supply chains need buoyancy, not just resilience

Pre-pandemic, businesses were already working through the challenges of a VUCA world – where volatility, uncertainty, complexity, and ambiguity in general conditions and situations were often seen. Faster technological changes, digitization, shortening product life cycles, rapid changes in consumer preferences, and political changes all contribute to this view.

The events of the last three years have created even more instability in Supply Chains, and resilience is now a key topic of debate. We can define resilience as the “capacity to recover quickly from difficulties,” but this implies a return to how things were rather than a new, constantly changing paradigm. It is the challenge of an increasingly uncertain future that forces the question of Supply Chains’ purpose and how they should be designed, governed, and operated to continue running productively in the face of whatever challenges are thrown at them.

Just as a ball will float in a storm on the sea, so must our Supply Chains! They need to be buoyant.

Purposeful Supply Chain design

The purpose of a Supply Chain is to get products to people who need them, when they need them, and at an affordable price. This is the definition of a productive Supply Chain.

supply chain productivity model

This should be done sustainably and responsibly. Supply Chains often operate in a non-responsible way, presenting numerous examples of unfairness in the distribution of value along the chain. The control of data and information is a key enabler of negotiating power plays between parties – it is incredibly challenging to get two entities to collaboratively plan just for mutual benefit.

Large enterprises often optimize their operations to the cost of their SME suppliers. From a Supply Chain finance perspective, the bigger players have better credit terms but pass the risk and costs to their supply base – increasing their own cost and risk and leaving the Supply Chain sub-optimized.

Key supply chain design considerations

As part of a Business Model Design, product and marketing strategies should inform and drive Supply Chain strategy and ensure strategic alignment.

supply chain business model design

In a fast-moving consumer goods context, the Supply Chain design requirements for an everyday low-price (EDLP) pricing strategy with relatively stable demand differs from one with deep-dive Hi-Lo promotions and unpredictable demand. The challenge of the Supply Chain design is that within the life cycle of assets, a business may switch between EDLP and Hi-Lo many times. If the design is optimized for EDLP or has high predictability, there will be issues!

The design principles need to work through the infrastructure and operating model to deliver the necessary level of structural flexibility and dynamic flexibility.

Structural flexibility concerns the infrastructure and set-up of the physical Supply Chain and the assets. This includes:

  • in-house capacity
  • outsourced manufacture capability
  • multiple supplier capability
  • geographic location (in-country, near-shore, off-shore)
  • the option to extend or move nodes in the supply chain.

Dynamic flexibility focuses on the operating model – how the physical assets will be managed. The model covers the following:

  • business processes
  • governance and decision rights
  • organizational design
  • performance management processes (e.g. who determines the levels of stock, where it should be held, and the approval processes for those decisions).

Orchestration and synchronization of the Supply Chain are critical enablers for ensuring it is as productive as possible. This is achievable by maximizing flow through the Supply Chain and rightsizing the buffers for stock and spare capacity.

Actions are driven from the source

The signal from the head of the chain closest to the point of final demand should drive actions across the whole chain. Essentially, interactions between business entities within the Supply Chain should be principally taken from a planning perspective rather than a procurement perspective.

There is a need to understand the constituent elements of the buying demand behavior, such as surge and base volumes, to inform the decisions taken in the chain. For example, increased demand for mobile phone gifts may be seasonally driven by Christmas versus purchases for birthday presents or end-of-contract replacements, which are more likely to be spread throughout the year.

A segmentation approach to the demand signal is required to determine the right supply action – an example being the setting of production wheels within a factory or a runners/repeaters/strangers approach to planning.

supply chain flexibility model

Decisions on the required level of dynamic and structural flexibility are critical for businesses. There is a direct cost for resilience as businesses choose to move to lower-cost, more efficient Supply Chains from ones more sensitive to shocks. The positive financial impacts are facilitated by delivering a more responsive approach. An adaptable Supply Chain model, in short, brings new capabilities into the network.

We can consider this cost in a similar way to an insurance premium. Business cases for resilience will be needed – but how is that developed, measured, and articulated against traditional business cases optimized to ROI cash? A traditional business case based on a single number and set of assumptions is inadequate for the unknown storms which may lie ahead. They must incorporate tolerance for different assumptions to give range and richness to thinking.

A balanced response enabling flexibility

Business processes need to develop. One example would be the S&OP process. A traditional S&OP process focuses on dynamic flexibility – aligning Sales and Supply Chain plans to meet demand – often over a relatively short time frame. So, what is the trigger for a structural network design change? How would a review of structural flexibility sit alongside the S&OP process?

Supplier resilience strategies also need development. If one of the needs for structural flexibility is multi-sourcing – how will volume be allocated? Will businesses pay for suppliers to be ready to supply (just in case they are needed), even in a high-inflation economy? Supplier relationship management will need to develop longer-term, more collaborative processes rather than playing a zero-sum transactional game where the price is the key focus.

Top tips for improving Supply Chain flexibility and resilience

So, what are the actionable insights?

  • Commercial and Supply Chain Strategies need to work together over the lead time for structural flexibility.
  • Creating the capability to react to unknown future Supply Chain shocks will increase upfront costs. This needs to be reflected in business cases. Scenario evaluation tools provide insight into the decision-making process.
  • Design for uncertainty and segment the Supply Chain. Actively manage the inventory and capacity buffers to enable a stable beat.
  • Collaboration for network orchestration, both within and between enterprises, needs visibility of data across end-to-end Supply Chains. The use of advanced planning systems is an enabler for decision-making. Procurement’s role and behavior are likewise critical to supplier relationship management.
  • Businesses need to develop collaboration and governance processes for business process design and decision-making. Self-sufficient, empowered teams are enablers for dynamic flexibility.

One of the lessons from the last five years within Supply Chain management is that simply being resilient to recreate the previous conditions and Supply Chain set-up is no longer sufficient for future success. Teams constantly battle from one shock to another – and this is not sustainable. A reactive way of working creates burnout and costs businesses money.

Businesses must actively decide the right level of dynamic and structural flexibility they need. This creates the required capabilities, so they can bounce back from Supply chain Disruptions, use the next crisis to produce opportunities, and create competitive advantages.

Supply Chains need buoyancy, not just resilience.

Ready to learn more?

The insights in this blog are taken from our Innovating Profitable Manufacturing Supply Chains with Resilience webinar organised by
Board International

Watch it on-demand now to take a deeper dive!

Categories
Resources

Is your supply chain sustainable?

Overview

Sustainability in manufacturing is a hot topic. And rightly so – many manufacturers produce large amounts of waste, much of which the supply chain creates. Rather worryingly, our supply chains make up 60% of carbon emissions in the UK.

The UK government’s initiative to reach net zero by 2050, as well as the legal obligations under the UN’s 2030 Agenda for Sustainable Development and the OECD Guidelines for Multinational Enterprises, is now well known. However, there is much, much more that can be done to reduce emissions – and digital technologies have a crucial role to play.

Click below to read more about the five best ways to promote sustainable practices within your supply chain.