Categories
People Resources

Digital Change Toolkit

Research overview

The Digital Change Toolkit is a freely available online resource which can help organisations to prepare, design, and evaluate the people and organisational aspects of digital change. It consists of three core components:

  • A six-stage change process with comprehensive guidelines for each stage
  • The CResDA Tool (a questionnaire for assessing and evaluating employee attitudes)
  • The Socio-Technical Scenarios Tool (a workshop based tool for assessing the current situation, designing future visions and developing action plans).

The Digital Change Toolkit offers:

  • Reliability: The Toolkit is grounded in research and established best practice guidelines, to provide credibility and effectiveness in supporting digital change.
  • Integration Flexibility: The Toolkit can be used on its own or in conjunction with other tools that focus on the design and implementation of new technologies or business models as part of digital change.
  • Versatile Application: The Toolkit is suitable for different change projects (both large and small) that involve technology or digital tools.
  • Scalability: The Toolkit can be used within a single organisation, across organisations, or across supply chains and is flexible and adaptable to suit the needs of the organisational context in which it is used.

The Digital Change Toolkit provides comprehensive guidelines to follow at all six-stages of a digital change process.

This research was conducted by Professor Carolyn Axtell, Dr. Vladislav Grozev, and Dr. Hui Zhang (University of Sheffield). This work was supported by the UKRI Made Smarter Innovation Challenge and the Economic and Social Research Council via InterAct [Grant Reference ES/W007231/1].

For further discussions or to propose potential applications/collaborations, please contact Vladislav Grozev.

Categories
InterAct Blog

Improving supply chain ethics with the industrial metaverse

In today’s globalised business world, there is a growing need for ethical supply chain practices. Manufacturing companies are facing complex challenges in modern production, and the importance of transparency and accountability has never been greater.

In this article, leading InterAct funded researchers from the Institute for Manufacturing (IfM) at the University of Cambridge explore the potential of the industrial metaverse to help elevate ethical standards across supply chains. Examining the intersection of technology and ethics, the IfM team offers valuable insights into how manufacturers can navigate regulatory environments, build consumer trust, and promote positive social change.

In a world of globalised supply chains, manufacturing firms often lack awareness and control of their external operations, which can result in unintentional non-compliance with regulations. While forced labour generates $236 billion in illegal profits annually (International Labour Organization), European companies will soon have to show compliance with environmental and human rights standards within their supply chains.

In response to mounting concerns, Europe is poised to implement stringent measures to hold corporations accountable for their supply chain practices. The forthcoming ‘Corporate Sustainability Due Diligence Directive’ heralds a new era of corporate responsibility. Large companies must conduct comprehensive audits of their supply chains, identifying and rectifying instances of forced labour and environmental degradation. Compliance will hinge on demonstrating adherence of the supply chain ecosystem to human rights and environmental standards.

The regulatory landscape is not confined to Europe alone. The UK, through initiatives like the Modern Slavery Act of 2005, has committed to fostering transparency within supply chains to eradicate all forms of worker exploitation. Moreover, further legislative reforms are on the horizon, promising a paradigm shift in corporate accountability.

How high is the risk of being penalised for suppliers’ actions?

Currently, the lack of production transparency allows non-ethical manufacturers to cut corners, giving them a competitive cost advantage that appeals to consumers. Unfortunately, many of these consumers are unaware of the wider context and end up supporting production that causes serious harm to societies and the planet.

Manufacturers can’t wait for new regulations about environmental and human rights standards in the UK. They must lead the development of digital tools for their production environments that delve into the existing supply chain data. This will demonstrate that their products are made with minimal adverse impact.

To enable this, it is crucial to make the production processes more transparent. One possible way to achieve this transparency is by leveraging augmented reality technologies, which can interpret and explain the existing complex data along supply chain echelons and incentivise the creation of new data sources.

So, in light of these developments, how can manufacturers ensure compliance with the new regulations and help uphold human rights and environmental protection?

The industrial metaverse: the foundation for a more transparent supply chain?

Recent research conducted by IfM (supported by the UKRI Made Smarter Innovation Challenge and funded via the Economic and Social Science Research Council (ESRC)-led InterAct Network) offers an extensive overview of 1,680 international studies which reveal how extended reality technologies can support UK manufacturing by demonstrating production provenance in the Industrial Metaverse.

The Metaverse is a term used to describe the merging of the physical and digital worlds. It was first introduced by Neal Stephenson in his novel Snow Crash and later popularised by Mark Zuckerberg with Meta, a social network in extended reality.

The Industrial Metaverse comprises a series of ‘snapshots of realities’ around the data on sourcing, production, and delivery of components of a manufactured product, which can be explored in augmented reality. By exploring the upstream supply chain of components leading to the product, manufacturers can identify risks and take corrective action to comply with upcoming regulations.

Deploying industrial metaverse technology in practice requires:

  • access to data sources;
  • software (e.g. Unity Engine);
  • augmented reality headsets (e.g. Microsoft Hololens, Meta).

Although 3D virtual productions might look complex and expensive, new AI techniques such as Gaussian splatting can significantly reduce the cost of reality reproduction: a ‘reality snapshot’ can now be created by anyone using a smartphone. This means, UK manufacturers can demand the video screening of the production environment from potential suppliers at the procurement stage. This is where lower-tier suppliers are incentivised to agree to increase transparency in exchange for eligibility to sell products and services.  Decentralised databases can be used to store this information at the supply chain level. It is important to note that creating fake snapshots could lead to legal repercussions and regulatory requirements.

Case study: contrasting opaque and transparent chocolate supply chains

Agriculture is almost uniquely resistant to technological change because of the remoteness/lack of oversight/scale of sites, and it is an area desperately in need of innovation. Leading chocolate brands have long been criticised for neglecting ethical standards in cocoa procurement, and many of the brands can’t effectively enact change since the market behind wholesalers is not transparent. This situation creates a high risk potential for social injustice and modern slavery, i.e. when the wholesaler purchasing prices make cocoa sales below the point of profitability, and farmers are forced to take children out of school to work on the farm.

Industrial metaverse, established along such supply chains, can spur transparency and influence to change the status quo. As European consumers are the primary market for cocoa harvesting, they have the market power to improve conditions for farmers in West Africa. To end forced labour and enable children to access education, requires new tools that support the transparency of cocoa supply chains for consumers.

While labour and environmental abuses exist in many supply chains, shocking 60% of cocoa-growing households in Ghana’s upstream cocoa supply chain are estimated to use child labour. Ensuring manfuacturers and consumers have access to accurate information about these unethical practices is therefore an urgent issue. A famous example of good practice is the ‘Bean to bar’ Tracker, along with QR codes,  barcodes,  biological markers of specific farms and fermentation processing locations, all of which can link chocolate bars to their potential origin. By comparing the known land size of a farm and the claimed cocoa harvest from that land, we can identify if cocoa of unknown origin is blended into the batch. While such tools are currently being used internally for supply chain traceability, adding an Industrial Metaverse component can open up and showcase the evidence to consumers. Consumers will be able to witness vivid experiences demonstrating the potential impact of supporting the chosen brand. This can showcase the positive changes to society (e.g. freeing children labouring to get an education) or highlight negative practices (e.g. the realities of environmental damage or modern slavery). Such evidence can build a strong identification that by purchasing ethical brands, consumers will be supporting the continuity of ethical production practices and local communities’ upstream supply chains.

Transforming production practices in the industrial metaverse

The Industrial Metaverse will increasingly move from merely representing reality, to shaping it. By shifting demand to ethical products, manufacturers will be able to increase their production scale, reducing the cost per unit and creating a greater impetus towards sustainability.

Instead of waiting for new regulations about environmental and human rights standards to be implemented in the UK, manufacturers must lead the development of similar immersive experience prototypes to confirm the ethics of their production environments. Going beyond the food production case, electronics and automotive manufacturers can validate their production processes by establishing an industrial metaverse around their products and demanding ‘reality snapshot’ data from their supply chains. It will propagate the impact across supply chains towards reaching multiple firms worldwide and make production more transparent for consumers. Not only will that reduce risks of non-compliance with upcoming regulations, but it will also anchor consumer demand with positive societal changes along supply chains.  By doing so, manufacturers can champion Sustainable Development Goal 12: “Responsible Consumption and Production”.

What practical steps should manufacturers take from this?
  1. Audit internal cost structures and visibility of operations along supply chains. Instead of aggregating costs at the wholesale level, manufacturers must enquire about the work conditions, energy sources, and potential carbon dioxide emissions through supply chain tiers.
  2. Collaborate with extended reality solution providers to prototype Industrial Metaverse around their products and reveal production ethics along supply chains.
  3. Analyse the integrated data and leverage alternative ways to reduce ethical risks. Communication throughout the industrial sector will help address industrial concerns about data privacy and confidentiality, leading to the industrial standard.

The IfM is currently working on developing a metaverse pilot for highly regulated sectors like aerospace, automotive, and food. These industries have very strict regulations that limit transparency. The goal is to enable a more transparent supply chain, which would contribute to the adherence of human rights and environmental protection. If you would like to collaborate with the team, contact Dr. Nikolai Kazantsev – nk622@cam.ac.uk or IfM Engage.

Acknowledgement: This work was supported by the UKRI Made Smarter Innovation Challenge and the Economic and Social Research Council via InterAct [Grant Reference ES/W007231/1]. We thank Prof Letizia Mortara, Dr Michael Rogerson and Alice Mumford for their feedback on this article.

This article draws from the InterAct report ‘Manufacturing in the Metaverse’

This article was originally published on The Manufacturer

Categories
News

InterAct delivers message of human insight driven digitalisation at MACH24 and Future of UK Manufacturing Conference

On 16th April, InterAct Co-directors Professor Janet Godsell and Professor Jillian MacBryde joined audiences from across the manufacturing, digital technology, policy and academic communities at MACH24 and the ‘Future of UK Manufacturing’ Conference to discuss the strides InterAct is making to deliver new human insights into the digitalisation of manufacturing.

MACH24 is one of the UK’s largest manufacturing focused trade shows, bringing together over 500 exhibitors – all eager to showcase their latest cutting edge, innovative products and services across many sectors. InterAct was present for three days this year, with a stand in the Engineering Supply Chain Show where researchers and InterAct staff had the chance to engage with dozens of businesses.

The ‘Future of UK Manufacturing’ conference is an event organised by High Value Manufacturing Catapult, EPSRC and the Institute for Manufacturing (IfM), University of Cambridge, which brings together leaders from academia, government and industry. This year’s line up of speakers included: Sarah Sharples, Chief Scientific Advisor for the Department for Transport, Katherine Bennett CBE from the High Value Manufacturing Catapult, Benjamin Nicol from the Advanced Manufacturing team at the Department for Business and Trade, and Professor Jillian MacBryde, InterAct Co-director and Vice-Dean of Strathclyde Business School.

Visiting the events at the NEC, Birmingham and Cutlers’ Hall, Sheffield respectively, Professors Godsell and MacBryde delivered talks focusing on the scope of the InterAct Network’s projects, our growth over the past two years and the exciting forthcoming research outputs.

Discussing her session at the ‘Future of UK Manufacturing’ conference, Professor MacBryde said: “It’s fantastic to have the opportunity to be here with so many voices from across the industry, policy, and academic divide, all discussing how we can drive forward a bold vision for the future of manufacturing in the UK.

We are conducting a lot of really valuable work concerning the integral role of people and human insights in the digitalisation process, and it’s been great to have the opportunity to deliver a overview of what we’re doing to such a receptive audience. The discussions we’ve engaged in here today will definitely help to inform our research going forward.”

Categories
News

Made Smarter Centre for People-Led Digitalisation launches call for papers

To improve productivity and efficiency the manufacturing sector has regularly looked to evolve its systems and embrace new technologies. More recently the pace of change has intensified as we see the emergence of digital technologies such as artificial intelligence, digital twins, advanced analytics, cobotics, and smart manufacturing. Learning from past challenges, particularly in the 1980s when the adoption of robotics faced obstacles due to insufficient consideration of human factors, centres like the Made Smarter Innovation: Centre for People-Led Digitalisation have recognised the important role that people play in the adoption and acceptance of new technologies.

Although digital technologies have the promise of creating significant economic, environmental and societal benefits, they also have the potential to substantially alter the future of work – the jobs people do and how people work. The world is currently at a crucial decision point – what do we want the future of work to look like?

Taking a people-led approach to digitalisation aims at improving the outcome of the adoption of digital technologies. This is achieved through prior explicit consideration and planned appropriate action that prioritises human needs and working patterns in the design and implementation of digitalised work systems.

The team at People-Led Digitalisation are seeking to publish innovative research which explores the human element of digitalisation, be that in the design of digital technologies or the implementation of digital technologies within a manufacturing environment.

They are welcoming original research, reviews, impact and industrial case studies, from the perspective of improving manufacturing performance such as (but not limited to); increased productivity, reduction in environmental impacts, re-imagining manufacturing jobs, people-led digital change. The following top-level themes should be used as a basis:

  • The future of work in manufacturing to 2030 and beyond,
  • Stakeholder engagement in digital change,
  • Digital skills,
  • Industrial Digital Tools for good work,
  • Metrics of success in digitalisation projects,
  • Enablers and barriers to the adoption of digital technologies,
  • Readiness for digital change,
  • People-led approach to design of digital technologies.
Categories
InterAct Blog

More than just a desk: Can co-working spaces make labour markets more inclusive?

This article was originally published on the OECD COGITO blog

Since the pandemic, co-working spaces have exploded in popularity. The number of people working in these spaces worldwide is predicted to double in 2024, relative to 2021, reaching 5 million users. They offer an accessible, flexible mode of working that appeals to professionals, leading policy makers to look for ways to harness their potential to drive growth. But can they also have a role in making growth more inclusive? 

More than just a desk

Co-working spaces (CWs) come in various forms. The physical spaces range from adaptable layouts in industrial settings, including converted warehouses and historic buildings, to specialised studios tailored for comfort. They can be for-profit companies and non-profits, and many are supported by local governments or regional development agencies.  

Public support can be directed to the owners of a co-working space. For instance, local governments have provided financial support to run a co-working space or incentives for the creation of co-working spaces in unused public buildings. In other cases, the use of co-working spaces can be encouraged, for instance through the provision of vouchers to freelancers, self-employed workers and businesses.  

Co-working spaces offer cost-effective solutions for individual users through shared infrastructure. Moreover, they foster a diverse in-house community for start-ups, entrepreneurs, freelancers and companies. Firms of all sizes increasingly use co-working spaces to allow their employees to work away from headquarters, resulting in a trend where office workers now live further from their jobs than they did before the pandemic. 

As a hotbed of new activities, from fostering entrepreneurship to networking among workers from different companies, co-working spaces may provide a boost to local economies. For instance, the Ludgate Hub in County Cork, Ireland, can point having created over 300 new jobs in the region. However, there are more ways in which co-working spaces can benefit their communities. 

How co-working spaces can make local labour markets a little more inclusive

Many co-working spacess have become vibrant community hubs, closely integrated with their local environments. A 2019 study on co-working spaces in Italy reported that three-quarters of the surveyed coworkers noted a beneficial impact on the urban and local context. Due to their connections with local communities, evidence is also mounting that co-working spaces can support those facing challenges in the labour market in at least three ways. 

First, by providing a convenient solution for workers with family or caring responsibilities. A national panel survey of 2 500 working parents conducted by Harvard Business Review revealed that “nearly 20% of working parents had to leave work or reduce their work hours solely due to a lack of childcare. Only 30% of all working parents had any form of back-up childcare, and there were significant disparities between low and high-income households”. Some co-working spaces, like The Tribe in Devon, UK, tailor their support and community building to focus on the needs of women – especially working mothers and carers. Others, like Coworking Toddler in Hannover and Berlin, Germany, take a step further by providing workplaces that integrate professional settings with childcare, enabling parents to concentrate on their work while their children are cared for in an adjacent daycare facility. 

Second, by providing a space for more experienced workers to share their knowledge with individuals Not in Education, Employment or Training (NEETs) and other vulnerable groups. Co-working spaces have been actively creating opportunities for young artisans to work alongside experienced professionals, some retired, who are eager to pass on their manufacturing expertise. For instance, Fablab in Verona, Italy, and Center-Rog in Ljubljana, Slovenia, provide an entry point for people of all age groups to learn new skills, with trainings offered ranging from 3D-printing to food preparation.  

Third, by supporting the attraction and retention of high-skilled workers. Co-working spaces can contribute to the retention of local workers by providing them an option to combine remote work with occasional office attendance. This is particularly critical in rural areas, as it allows such places to retain and attract high-skilled workers, for instance, in the Ems-Achse, a group of mostly rural districts in north-west Germany. However, co-working spaces also provide these high-skilled remote workers with a vital connection to the local community, through which they can share knowledge and inspire others.  

Supporting innovative initiatives

In short, co-working spaces can provide communities with valuable new hubs that can connect workers, helping share knowledge, skills, and opportunities. This can help regions address pressing labour shortages and skills gaps while supporting vulnerable workers into new opportunities. Many local governments and employment agencies are therefore finding creative ways to support co-working spaces as part of a broader strategy to build thriving communities.  

“In my experience, my coworking community helps more with mental health balance for my coworkers – as most come to my space for the social links that are created here. The networking aspect which stems from this means that most of my coworkers have used services offered by other coworkers (coaching, communications services, building renovation …) or collaborated with other coworkers on projects (an architect with an interior designer, two coaches on a new service offering…).” 

Antonia Mahon, Founder of The Hub in Sèvres, France 
Categories
Productivity Resilience Resources

Verification, validation and testing (VVT) for new products and technology

Watch a short video about the importance of VVT processes and the potential of the new VVT tool.

Research overview

The development of new digital technology needs extensive verification, validation and testing (VVT). Implementing an effective way of analysing the requirements of different stakeholders, i.e., the customer’s voice, regulations and business’s voice and how these requirements must be considered often poses a significant challenge.

This project has developed a systematic method of analysing critical requirements and influences on VVT activity for new technology development and manufacturing. This offers support for the adoption of digital technologies and facilitates collaboration between SMEs and larger companies. The free to use online tool gives you the ability to visually analyse the transition of requirements from risk analysis to prioritisation and the impact of these choices.

This research was conducted by Dr. Khadija Tahera (The Open University). This work was supported by the UKRI Made Smarter Innovation Challenge and the Economic and Social Research Council via InterAct [Grant Reference ES/W007231/1].

For further discussions or potential applications/collaborations, please contact Khadija Tahera.

Categories
People Productivity Resources

Fast scheduling of human-robot teams collaboration on synchronised production-logistics tasks in aircraft assembly

Research overview

The increasing deployment of mobile robots and collaborative robots is changing the manufacturing landscape with emerging technologies in Industry 4.0.

The deployment of human-robot teams (HRTs) promises to realise the potential of each team member regarding their distinct abilities and combines efficiency and flexibility in manufacturing operations. However, enabling effective coordination amongst collaborative tasks performed by humans and robots while ensuring safety and satisfying specific constraints is challenging.

Motivated by real-world applications that Boeing and Airbus adopt HRTs in manufacturing operations, this paper investigates the allocating and coordinating of HRTs to support safe and efficient human-robot collaboration on synchronised production-logistics tasks in aircraft assembly.

This research was conducted by Dr. Daqiang Guo (IfM, University of Cambridge). This work was supported by the UKRI Made Smarter Innovation Challenge and the Economic and Social Research Council via InterAct’s Early Career Researcher Fund [Grant Reference ES/W007231/1].

For further discussions or potential applications/collaborations, please contact Daqiang Guo.

Categories
News

InterAct partners with Made Smarter Adoption for ‘Technology Transfer Workshop’

As part of Leicester’s Innovation Festival, InterAct partnered with Made Smarter East Midlands (MSEM) to host the latest in their series of Technology Transfer Workshops titled, ‘Increasing Productivity through the Adoption of Digital Technology’ on 9th February, 2024.

The InterAct and MSEM teams gathered a sizeable audience of manufacturers to hear from four Industrial Digital Technology (IDT) providers about solutions designed to assist SME’s with increasing productivity, and the InterAct funded, human insight focused research that can help to support successful implementation.

Attendees had the chance to learn about best practice for adopting new manufacturing technology, minimising implementation time, and maximising upside. Our guest speakers drew on a wealth of expertise to discuss the risks, key challenges, and considerations in adopting digital technology.

Presenters sharing the technologies on offer included:

  • Phil Tonge and Mark Lees of TQC – discussing their design and supply assembly automation, robotics, and testing equipment services.
  • George Slater of FourJaw – examining the how manufacturing analytics technology can use new and existing operational information to power data-driven production planning and strategy.
  • Vignaes Rajesh and Chris Pavelin of Sensopart – delivering a presentation on optical sensors and vision-guided robotic solutions.
  • Nicola Ballantyne of MESTEC – explaining the benefits of MESTEC’s integration of a manufacturing execution system with a traditional ERP framework to integrated front and back office functions more effectively.

Participants then had the opportunity to hear from two InterAct funded researchers from the University of East Anglia, Dr. Dimitrios Dousios and Dr. Antonios Karatzas about their work on application of digitally servitized business models for SME manufacturers. Their online tool offers decision-makers the means to diagnose the contextual and organisational conditions of their business and determine the suitability of digital servitization business models. You can access their full report and toolkit here.

The event concluded with a panel discussion featuring technology providers and InterAct researchers, discussing the challenges associated with digital implementation and improving productivity within the sector, followed by a general networking session and showcase opportunity for businesses and Made Smarter investments.


Made Smarter East Midlands – ‘Technology Transfer Workshops’ are a dynamic series of events dedicated to empowering manufacturing Small and Medium-Sized Enterprises (SMEs) in the East Midlands. Presented by Made Smarter East Midlands, these workshops are specifically designed to show how the adoption of digital technology can help manufacturers solve everyday challenges and capitalise on new opportunities. To find out more about how Made Smarter Adoption can help you, and keep up to date with upcoming events, visit their website.

Categories
People Resilience Resources Sustainability

Manufacturing in the Metaverse

Research overview

The future of manufacturing will be underpinned by two elements: digital technologies and collaboration. The industrial metaverse is the epitome of these elements, using extended reality to blend the physical and digital worlds to transform how businesses design, manufacture, and interact with objects.

This report presents a coherent summary of established knowledge from academia and practice on the drivers, risks, enablers, and barriers of the industrial metaverse for manufacturing through a systematic literature review. These aspects are explored at three levels of granularity: the individual, the firm, and the manufacturing ecosystem.

As a result of this work, the InterAct funded team has also conceptualised a prototype for an industrial metaverse implementation using a case of cocoa manufacturing.

This research was conducted by Dr. Nikolai Kazantsev, Dr. Bethan Moncur, Russell Goh, Professor Chander Velu (IfM, University of Cambridge). This work was supported by the UKRI Made Smarter Innovation Challenge and the Economic and Social Research Council via InterAct [Grant Reference ES/W007231/1].

For further discussions or to propose potential applications/collaborations, please contact Nikolai Kazantsev.

Categories
InterAct Blog

Workshop insights: International Perceptions and Megatrends of Manufacturing

I recently attended a workshop on international perceptions and megatrends in manufacturing. Hosted by Aston Business School, it featured various experts and practitioners sharing their insights on the current manufacturing landscape and the strategies required for its positive future. The research team (Dr Guendalina Anzolin, Dr Jennifer Castañeda–Navarrete, Dr Dalila Ribaudo and Yanan Wang) included researchers and practitioners from Aston Business School and the Institute for Manufacturing, University of Cambridge. The research is funded by InterAct, a network led by the Economic and Social Research Council and Made Smarter UK.

Initial findings from the research

During the event, the project team shared some initial findings from their research. This has involved a systematic review and expert validation, with a specific focus on how manufacturing is discussed in contexts where digital technologies have been adopted, and widely addressed at the policy level. The analysis encompasses the following countries: Canada, Germany, Korea, Singapore, Switzerland, the United Kingdom and the United States.

The results emphasised the different connotations manufacturing holds for various demographics and how manufacturing, ranging from robotics to engineering systems, varies in definition based on individual perspectives. There is an observed dichotomy in public perception of the sector, ranging from antiquated views of dirty factories to a modern, automated image. Consequently, while the industry still captures public interest and is deemed essential, there are disparities between generations in understanding its significance.

Furthermore, the research has found familiarity with the sector positively influences opinions, indicating a gap between the familiar and unfamiliar regarding job quality perceptions. The discussion also emphasised the shift of countries from manufacturing to services and explored the importance of a robust manufacturing base for sustainable growth. Gender dimensions and the impact of COVID-19 perceptions on the industry’s role in innovation were also explored.

External speakers

The external speakers included Professor Fumi Kitagawa (City-REDI), Ollie Burrows (West Midlands Growth Company), Stewart McKinlay (National Manufacturing Institute Scotland), and Alain Dilworth (Made Smarter UK) shared initiatives and challenges faced in different regions. From the UK’s creation of the ‘Catapult’ technology and innovation centres focusing on manufacturing-related R&D and emerging technologies, modelled on the German Fraunhofer Institutes, to regional strategies focusing on net-zero, automotive innovation, and the intersection of technology with manufacturing, various initiatives are driving growth and sustainability.

Insights

Insights highlighted a stark disparity between perception and reality, with challenges like labour shortages, health and safety concerns, and the need for upskilling the workforce. Additionally, a Senior Policy Manager at Make UK, highlighted upcoming narratives for the manufacturing sector, especially in the context of elections and economic resilience. Emphasizing net-zero goals and a push to increase manufacturing’s GDP contribution. There was consensus that an overarching industrial strategy is needed focusing on skills, supply chains, and technological advancements.

The workshop offered a comprehensive view of global manufacturing perceptions, challenges, and the need for a strategic shift in how we perceive and position the sector. Addressing misconceptions, advocating for skills development, and aligning policy with industrial strategies emerged as critical themes for the future of manufacturing. As industries navigate an ever-evolving landscape, bridging the gap between perception and reality will be pivotal for sustained growth and innovation in manufacturing worldwide.


This blog was written by Dr Chloe Billing, Research Fellow, City-REDI / WMREDI, University of Birmingham and originally published online by the University of Birmingham.