Categories
InterAct Blog

How can we attract the next generation of young talent into UK digital manufacturing careers by 2040?

Our exciting new project aims to develop a strategy to inform the rebranding of UK digital manufacturing to attract the next generation of talent into UK digital manufacturing careers by 2040.

In May 2023, the team members met at an InterAct research sandpit hosted by Loughborough University, which was held with the aim of developing research projects to accelerate the innovation and diffusion of Industrial Digital Technologies in UK manufacturing.

During the sandpit, it became clear that our interdisciplinary team shared a passion to make UK manufacturing a place that attracts, includes, and supports young talent from diverse backgrounds and mindsets. However, recent research conducted by MAKE UK reports only 2% of the average UK manufacturing workforce is currently below 30 years old [1].

Additionally, a recent InterAct 2023 survey on UK perceptions of manufacturing has found that younger generations identify UK manufacturing as an unattractive brand with uncertain employment prospects which is problematic for attracting ambitious and creative digital talent [2]. These negative perceptions in part could be attributed to older generational memories and experiences of physically demanding manufacturing jobs that fuelled the post-World War II economic recovery. Accounting for the rise of today’s digital labour market [3], these negative perceptions and experiences of UK manufacturing are likely to shape children and grandchildren’s career choices. This all adds up to a generational problem in UK manufacturing which is deep-rooted in the cross-generational experiences of what UK manufacturing once represented and the extensive and diverse career opportunities that are available today and will be realisable the future.

These preliminary findings paint an unsettling picture for UK manufacturing, especially when digital transformation has become a strategic priority for companies [4], industries [5] and countries [6]. At the country-level for example, if the UK is to pursue its levelling-up agenda and overcome its regional [7] and international [8] productivity gaps, then attracting young, digitally literate, and productive workers into well-paid, high-skilled manufacturing careers would seem an intuitive and rational approach. However, academic research continues to report that a major barrier for the digital transformation of older firms in various manufacturing sectors is the legacy of underperforming business models, inefficient workplace practices and traditional organisational structures [9], [10], [11].

These organisational legacies also raise the challenge that new digital competitors – such as the big technology firms and technology start-ups – are perceived to attract younger talent and the career aspirations of Generation Z [12] through creative workplace practices, new organisation designs and innovation cultures. 

Therefore, to address this problem, our project intends to co-create the most plausible future scenarios for rebranding UK digital manufacturing to help stakeholders attract the next generation of young talent into manufacturing careers by 2040. As our project is exploratory in design, we will interact with a range of policy makers, educators, employers, and university students to gather insights on how to attract young people into UK digital manufacturing careers by 2040. This will be conducted through six work packages that range from data mining four generations of manufacturing data held by the UK Office for National Statistics to interviews and focus groups with key stakeholders including business owners, industry bodies, technologists, policy makers, educators and students that are passionate about supporting the co-development of UK digital manufacturing.

We will also work with Strategic Innovation Ltd – a technology and innovation consultancy with a passion for sustainability – on a key output which will be the co-creation of a cross-generational map of peoples’ lived experiences of UK manufacturing. This will include both past and present experiences and will visualise potential rebranding opportunities for attracting the next generation of young talent into digital manufacturing careers by 2040.

By providing stakeholders with a visualisation of the future, our project will initiate  the development of a strategy for digital manufacturing careers that can play a central role in the UK’s economic and social development at home and overseas by attracting top talent into these roles.

If you or any colleagues would like to participate in our project, please contact Karl Warner, our Principal Investigator at karl.warner@glasgow.ac.uk for further information.  


References

[1] MAKE UK (2021) Manufacturing Our Recovery Through Inclusion (https://www.makeuk.org/insights/reports/manufacturing-our-recovery-through-inclusion)

[2] InterAct blog (2023) Future workforces: job quality & perceptions of UK manufacturing

(https://interact-hub.org/2023/05/23/future-workforces-job-quality-perceptions-of-uk-manufacturing/)

[3] Digital Skills & Jobs Europa (2023) The Rise of the Digital Labour Market (2022)

(https://digital-skills-jobs.europa.eu/en/inspiration/research/rise-digital-labour-market-2022)

[4] Sousa-Zomer, T. T., Neely, A., & Martinez, V. (2020). Digital transforming capability and performance: a microfoundational perspective. International Journal of Operations & Production Management, 40(7/8), 1095-1128.

[5] Ciarli, T., Kenney, M., Massini, S., & Piscitello, L. (2021). Digital technologies, innovation, and skills: Emerging trajectories and challenges. Research Policy, 50(7), 104289.

[6] Senna, P. P., Roca, J. B., & Barros, A. C. (2023). Overcoming barriers to manufacturing digitalization: Policies across EU countries. Technological Forecasting and Social Change, 196, 122822.

[7] Office for National Statistics (2023) Regional labour productivity, UK: 2021

(https://www.ons.gov.uk/economy/economicoutputandproductivity/productivitymeasures/bulletins/regionallabourproductivityincludingindustrybyregionuk/2021)

[8] Office for National Statistics (2023) International comparisons of UK productivity (ICP), final estimates: 2021

(https://www.ons.gov.uk/economy/economicoutputandproductivity/productivitymeasures/bulletins/internationalcomparisonsofproductivityfinalestimates/2021)

[9] Warner, K. S., & Wäger, M. (2019). Building dynamic capabilities for digital transformation: An ongoing process of strategic renewal. Long range planning, 52(3), 326-349.

[10] Jones, M. D., Hutcheson, S., & Camba, J. D. (2021). Past, present, and future barriers to digital transformation in manufacturing: A review. Journal of Manufacturing Systems, 60, 936-948.

[11] Ates, A., & Acur, N. (2022). Making obsolescence obsolete: Execution of digital transformation in a high-tech manufacturing SME. Journal of Business Research, 152, 336-348.

[12] Barhate, B., & Dirani, K. M. (2022). Career aspirations of generation Z: a systematic literature review. European Journal of Training and Development, 46(1/2), 139-157.

Categories
InterAct Blog

Industrial metaverse for manufacturing systems: hype or future reality?

Our project aims to provide a coherent interdisciplinary summary of established knowledge from academia and practice on the application and potential benefits, barriers, and risks of a metaverse in manufacturing, mainly focusing on bridging technical and social insights.

Metaverse is expected to provide numerous benefits, particularly in production process optimisation, employee induction and collaboration. The most surprising research finding so far is just how varied the definitions of metaverse are. For our study, we define industrial metaverse as” a sensory environment that uses extended reality to blend the physical and digital worlds to transform how businesses design, manufacture and interact with objects”.

The existing industrial cases reveal technological barriers such as immaturity, lack of sufficiently strong communication networks and sustainability concerns. Other cases include cybersecurity risks like cyberattacks and data protection/privacy issues. The social barriers include jurisdictional and legislative difficulties, lack of cooperation between companies necessary to achieve interoperability and the need to change worker and user mindsets. 

Figure 1. Industrial metaverse as a new interface to the products’ manufacturing system

Although the data suggests immersion as a driving force of the metaverse[1], a full immersion can not be achieved without impacting the senses and feelings of a user. For example, in sensory marketing, similar impacts (experience stimuli) are used to trigger purchasing intention (Dewey, 1925; Schmitt, 1999), however, in the physical reality. Hence, we envision a similar trend in the digital world, where an industrial metaverse will extend the numeric and graphical data (such as reports) into coherent immersive experiences that will also affect feelings, Figure 2.

Figure 2. Industrial Metaverse as a combination of senses stimuli

Our conceptualisation efforts aim to prototype an industrial metaverse that activates several senses (sight, sound, temperature, and smell) and test how the extended experience triggers actions.

“Highly promising results are expected for the intersection of resilience and sustainability,” said Nikolai. “For example, based on the sensory marketing research that positions smell as the strongest attractor for purchasing decisions, we aim to virtualise the production conditions with sight, sound, temperature, and smell and enhance experience stimuli in the metaverse. We think it will better inform purchasing choice and support the demand pattern for clean energy, ethical production, and fewer emissions along supply chains.”

After the first results of the systematic literature review, we wish to explore the feasibility of the extended reality to shift decision-making towards more expensive but more sustainable decision-making along the manufacturing value chain[2]. Over the following months, our research aims to exemplify our concept using a scenario based on food manufacturing system for chocolate production. To do so, we will integrate the popular Augmented Reality platform with audio, temperature and smell generator devices to extend the experience for a policy-maker, manufacturer or customer making a hard choice between a cost-efficient vs. sustainable manufacturing system. This prototype will be used as a sensory dashboard for an extended representation of material sources, production conditions, carbon footprint and energy sources to better inform the stakeholder about the impacts of their decision.

“Carbon emission, working conditions, and energy consumption remain underexplored in the real world but visible in the metaverse. Hence, the metaverse can be used to raise awareness about manufacturing systems.”

Yet, It is unclear if being informed on carbon emissions in real-time will impact manufacturers’ use of their machines and shift the regulation imposed by policymakers. For example, would the smell of burning Amazon forests shift a consumer’s decision-making closer to more expensive sustainable purchase better than the printed carbon footprint number on the product package?

Figure 3. Industrial metaverse as a sensualisation of real-time data sharing   

The project has an open innovation philosophy, so we wish to create a discussion space around the metaverse application for manufacturing and are open to collaboration with the InterAct researchers and the industrial community.

To disseminate the findings, we plan to run a public event involving technology providers, industry, academia and stakeholders from the local public administration at the end of 2023.


References

Academic

Dewey, J. (1981). The later works, 1925-1953 (Vol. 3). SIU Press.

Schmitt, B. (1999). Experiential marketing. Journal of marketing management15(1-3), 53-67.

Petit, O., Velasco, C., Wang, Q. J., & Spence, C. (2022). Consumer consciousness in multisensory extended reality. Frontiers in psychology13.

Industrial

https://www.radiantvisionsystems.com/blog/creating-full-sensory-experiences-future-ar/vr/mr/xr

https://www.ericsson.com/en/6g/internet-of-senses

https://www.bitstamp.net/learn/web3/extended-reality-virtual-reality-augmented-reality-and-more/

https://www.designnews.com/augmented-reality/metaverse-will-engage-all-five-senses


[1]64% of industrial cases describe metaverse as a realistic user experience

[2] The team is considering to apply for further funding via the newly launched Impact Booster Competition of Made Smarter Innovation Challenge

Categories
InterAct Blog

Toyota, you and a “human centric” digital manufacturing future

The Interact tagline was carefully crafted when Made Smarter and ESRC stumped up the money to make this network a reality. That tagline being: “pioneering human insight for industry” with the spoken aim to create a “network that aims to bring together economic and social scientists, UK manufacturers, and digital technology providers to address the human issues resulting from the diffusion of new technologies in industry”.

Yes, yes and yes again – this is what drew me to interact in the first place. It makes perfect sense when you think about it; in our factories, to make things, you need to bring machines, materials, and a method of doing it together with people. People are the glue that make the 4Ms work in harmony. And yet, walking the halls of Smart Factory conferences – the exhibitor wares on show are 95% things or data.

IoT, Sensors, robots, cobots, AI and data analytics are all critical, in tandem with people. We need to concurrently invest in skills to get the best out of these innovations, especially if we want a long term functioning society to manage this nascent 4th industrial revolution, without unrest and social upheaval.

Ponder for a second on any investment you make in a manufacturing business. The following are likely to be true:

Somebody has to research the market

Somebody has to talk to vendors

Somebody has to negotiate and buy it

Somebody has to commission it

Somebody has to programme it

Somebody has to maintain it

Somebody has to load and unload it during the shift

Somebody has to change the kit over or update the programme/parameters

Somebody has to respond to it when the Andon goes off

Somebody has to act on that

Somebody has to interpret the data that comes out of sensors

Somebody has to troubleshoot

Somebody has to problem solve and…

…a number of people have to find kaizen to keep you competitive.

‘Somebody’ might be multiple people for each of these activities. What is clear is that ‘Somebody’ needs to considered alongside the physical and data innovation that Industry 4.0 has to offer. InterAct are, comfortingly, working in that space.

This raises an important question about where manufacturers should invest in digital manufacturing. Investment always warrants head scratching as capital dollars/pounds/euros and yen are scarce, but thinking is free. The mantra I’d advise you to adopt underpins the model below. Invest where you SHOULD, not just where you CAN.

This requires pausing, thinking and coming to the CapEx table with a business problem to solve – low productivity or persistent specific quality issues for example. Having said that, the lean start-up principle of creating proof-of-concepts means we can place multiple bets (run trials) on various technologies, as long as we treat them like little experiments to learn whether they’re worth investing in further.

A smart way of thinking about all of this is the Toyota style thinking that I experienced on my last two trips to Japan. They think of it as a numerator and a denominator. The numerator represents the equipment you use to create value that your customers will buy. The aim is to improve the equipment work. The denominator represents the people working in the manufacturing business and asks whether we can improve people’s work.

Within this model, the categories to invest time and resources in are those that:

For the Equipment – “predict problems” or detect “early symptoms” of problems (both of these are likely Safety, Quality or Delivery related)

For the People – “eliminate low value added work” (like walking around checking things at the start of the shift or the admin burden of logging results/performance) or “reduce variation in standard work” (as an example, think 2 setters on opposite shifts changing the same machine from part A to part B, but the first setter takes twice as long)

The real gold to be mined is in the 2 bubbles that serve both. Digital manufacturing done well can “visualise issues” that are hidden to the human eye or our current data harvesting and sensor inputs. Rather nicely, if you listen hard enough to the data, it can identify the next, best kaizen to take you forward.

The idea is this; if you focus on both Equipment and People you’re going to open up a bigger benefit by improving both the numerator and denominator. That sounds very much like competitive advantage to me. As Eddie Jones (yes, the former England Rugby coach) said in his recent book on Leadership “The only reliable advantage we’ve got is to learn faster than the opposition”

InterAct is the best game in town, looking into the future to secure the role of human skill in our bright digital future. Get involved, you can either snooze your way to 2040 and then stand, blinking into the sunlight, complaining about the outcome. Or you can help shape and secure the UK’s place in manufacturing’s coming world order. Interact is moving into an exciting phase in 2023/24 where the research bears practical fruit. There are various ways to get involved, and you can keep up to date with all the latest news and opportunities here.

For more information about Sempai and the support they provide to employers, please click here.

Categories
Future of Work Resources

‘Making Things Work’ – Perceptions of Manufacturing

The Future of Work team has recently completed a survey of 2107 representative people drawn from across the UK to provide insights into their perceptions of the manufacturing sector and jobs. The primary aim of this survey is to better understand UK public perceptions of the manufacturing industry and jobs, and what factors shape these views and opinions. We were interested in examining a range of issues:

  • Whether people still value (and how positive they feel about) manufacturing in the post-industrial economy, and their awareness of manufacturing in the media
  • What people associate with manufacturing work and jobs, and what qualities they are looking for in jobs that need to be reflected in job offers to attract talent
  • The perceived quality of manufacturing jobs for those currently working in (or familiar with) the sector and whether people would encourage others to enter the sector
  • How new manufacturing technologies are likely to change future jobs and careers in manufacturing
  • How can the sector best attract emerging young and ‘untapped’ talent?

In the ‘war for talent’ perceptions matter because they provide a snapshot of public opinion about the attraction of the sector and working in manufacturing. They may not measure up against ‘reality’, they may be ‘misinformed’ but ultimately this matters more to many of the people we interviewed than employers and industry stakeholders. However, if you are wondering how people in the UK look at the sector, or how employers should be best positioned to attract people into manufacturing, ignore them at your peril.

Our results throw up some surprising and interesting findings that we hope will be useful to a range of key audiences: academics, employers, industry stakeholders and UK policy makers.

Our findings indicate:

  • People still value manufacturing but visibility is lacking
  • Images of manufacturing work are putting people off
  • Job quality matters in manufacturing
  • The digital future looks bright but there are concerns about downskilling and job destruction
  • Attracting future talent means more good people practice

Our key messages for employers and industry stakeholders:

  • Keep talking up the value of your sector, people know you are essential and valuable, but the media reach and messaging of the sector isn’t reflecting that effectively.
  • Legacy images of old-fashioned manufacturing work impact negatively on how people look at jobs and careers in the sector. Although job quality is reasonable for many manufacturing workers, more needs to be done selling this message outside the sector to hard-to-reach groups such as women and minorities.
  • People anticipate that new technologies will improve the quality of future manufacturing jobs but have concerns about job destruction and its likely impact on opportunities and job security.
  • Going forward, attracting new talent will mean employers making greater investments in positive people practices in areas such as well-being, flexible working, and inclusive workspaces.

This work was conducted by Dr. Robert Stewart, Professor Jillian MacBryde, Professor Colin Lindsay and Dr. Carolina Marin-Cadavid (University of Strathclyde). This work was supported by the UKRI Made Smarter Innovation Challenge and the Economic and Social Research Council via InterAct [Grant Reference ES/W007231/1].

For further discussions and information about this research, please contact Robert Stewart.

Download “Report - Making Things Work - Perceptions of Manufacturing”

Making-Things-Work-Future-of-Work-perceptions-report-digital.pdf – Downloaded 246 times – 2.09 MB

Download “Perceptions of manufacturing - survey findings infographics”

Future-of-Work-Survey-Infographics.pdf – Downloaded 4403 times – 1.84 MB
Categories
InterAct Blog

Future workforces: advanced manufacturing & Generation Z

Forget some of the negative media hype and concern that you sometimes see from some social commentators and employers about Generation Z (Gen Z). Unlike us Boomers, Generation X and Millennials, Gen Z are the first truly ‘native’ digital generation, more tech savvy, nurtured on constant access to new technologies and more likely to be comfortable in the newly emerging worlds of digital manufacturing[1]

The high digital literacy of Gen Z offers many benefits for advanced manufacturers. They are more multi-skilled and able to execute (simultaneous) work tasks and roles across different digital platforms, while being more readily plugged into virtual and augmented realities[2]. As a workforce, they will be great for advanced manufacturing in the years to come; very likely to tell you that your technology and IT might not be as cutting edge (or confusing) as you thought. If this is not enough, given the right in-work supports – from ‘onboarding’ and beyond – they will allow manufacturers to create better value from problem solving, innovation, and creative roles using their digital toolboxes.

In many ways, the entry of Gen Z to the labour market is ideal for advanced manufacturers adopting new technologies, and their great potential to further change workplace people practices and business models. However, as in all happy(ish) marriages between the needs of employers and younger people’s lifestyle interests and skills, both partners may have some underlying issues that will make an effective relationship based on new technologies difficult to sustain unless they both work at it.

There should be no doubts about the high demand for digital skills in advanced manufacturing. Employers need to understand some key elements of Gen Z thinking and to build this into their recruitment and retention strategies. Ongoing staffing shortages, the seemingly blurring pace of digital and technological change, ‘quiet quitting’ and some issues with workplace upskilling have all helped to accelerate industry demand for digital and multi skilled workforces.

These changes have pitched advanced manufacturers into the ‘talent war’ to attract, retain and develop the most skilled and capable young people. Attracting and keeping the best talent, however, is highly competitive and many industries (including manufacturing) are reporting skill shortages and high levels of unfilled vacancies[3]. Very simply, manufacturers without the right set of people capacities (and practices to support these), digital skillsets, and multi-skilled workforces will struggle to capture and use those advanced technologies to help them compete and innovate.

These labour demand and supply issues pose some interesting questions about how UK manufacturers should be competing for Gen Z talent in terms of job quality. A downside? Well like Millennials they are very values driven and possibly sensitive to your image as an employer on social media. Image matters for the new generation. For advanced manufacturers, one major challenge is the problem with some of the wider UK manufacturing sector. This comes with some powerful historical baggage.

Manufacturing is sometimes be seen by young people in the UK and US as an old-fashioned industry, low paying and male-dominated, offering large numbers of dull, insecure, and dead-end shifts in factory jobs[4]. Forget those images you may have in your head about the emerging SMART factories of the near future, this legacy persists, particularly among the older population segments who remember it and whose opinions may negatively shape their children and grandchildren looking for jobs and careers in today’s labour market. They are not flattering perceptions of a sector looking to recruit ambitious and creative digital talent or even broaden its appeal among older or mid-career workers, or people in under-represented groups such as women and minorities.

On a positive note, these perceptions are very unlikely to match the reality of many or most modern advanced manufacturing settings, particularly in big multinational companies and those who‘ve adopted and transitioned into digital technology. These settings offer (less monotonous) more interesting, exciting, highly technical and financially rewarding work. The recruitment messaging needs to dispel the old legacy of your sector, show the augmented reality, the AI of the bots, the predictive and the multi-purpose data analytics, and whatever metaverse you can conjure.

Apart from showcasing exciting, innovative clean tech, what else should manufacturers be doing to better attract and retain Gen Z talent? There is no shortage of commentary on what Gen Z expect in the workplace, so let’s take three of the more important issues that often feature in wider discussions about them: values, diversity, and flexibility. Helpfully, all of these things connect with each other.

We know that an employer’s image, brand, reputation, prestige, mission, vision and values really matter in recruitment, commitment and retention. Its’ not just about pay, it really isn’t. Values make a big difference in competitive labour markets with restrictions on supply. Potential recruits and employee’s want to know something about your identity and values: how these resonate through your products, people practices, and culture.

Ideally, younger employees want to share in the positive impact and success of your business, be ‘proud’ to work for you and share that in their social media networking and posts. This means that the backstory (and the ‘future-story’) of who you are as an industry, sector and employer is a key part of attracting and keeping the brightest, the capable and the digitally skilled. You can be as sceptical (or ‘boomer’) about this as you like but realising the importance of the ‘image’ and what you stand for, and how you show and tell people your story is something that. For example, big UK-based multinational manufacturers who compete across international markets understand very well. It works.

Your values should set the tone for a whole series of complimentary policies and practices at work that help young people see meaning and purpose in their work. For advanced manufacturers, investing in people, developing their skills and caring about their wellbeing play very well to younger and early career audiences who will still be unsure about their place in the labour market.

A focus on Net Zero and the principles of the circular economy has a strong appeal to the wider social values of many young people keen on environmental messaging and actions around reducing waste and your carbon footprint. Employer values tell people what you care about: whether you look at your workforce as individuals and people; whether you care about their wellbeing and development; and whether you really are asking them to help make ‘useful’ products and have processes that are helping to make a more sustainable world.

Employer values and practices also feed into areas like diversity and being clear about your recruitment messaging. Why is diversity important? Well it isn’t about the numbers of women in your workplace, or those coming through the STEM pipeline. Research shows that gender diversity in manufacturing leads to greater innovation and profitability, and the benefits of having women in leadership positions are even greater. In other words, the implications of diversity (and more representative workforces) seem to be reasonably clear. The more diverse you are as a workforce and the more this is represented in the higher strategic decision making levels of companies, the more you will be likely to be able to harness these different views and experiences, produce better products more geared to different customer segments and better innovate than your competitors.

You can disagree about the need for diversity but the figures tell a different story. Manufacturers need to be much more proactive (and transparent) about equalities, diversity and inclusion at work, particularly when it comes to gaining ‘fair opportunities’ for career progression. Gen Z are more racially and ethnically diverse than previous UK cohorts and there has to be a bigger focus on minorities, and on women.

Only around two-thirds of manufacturing firms currently have an EDI strategy or even an intention to develop one and not surprisingly, minorities only make up 5% of boards and women only 18%[5]. Both groups still largely occupy supporting administrative and clerical roles, or in HR and marketing: far removed from key areas of senior management, making executive decisions and having a strategic influence in their firms. On these figures alone, you would be doing well to describe manufacturing as offering modern, equitable and progressive working environments. For Gen Z talent looking for employers who mirror their personal and social values around racial, ethnic and gender equality, these numbers will make depressing reading.

So how do you address this? At the very least, sense-check or independently audit the recruitment messaging to make sure you are maximising your appeal. In terms of the career progression of women and minorities there are also a few useful ways of addressing some of the internal cultural barriers that they face in moving into senior management roles: mentoring and sponsoring. To some these approaches are probably not as ‘bombproof’ as deciding promotions out with the lads on the golf course, but they are likely to be more effective in helping the business keep good talent.

One popular (post-pandemic) way of addressing the diversity issue concerns giving people greater flexibility at work, through re-designed shift schedules and working from home. Easier said than done for production staff than their non-production co-workers. There are certainly strong hints in the literature that greater flexibility and hybrid working (with some task autonomy) is very well suited to Gen Z workers. Perhaps too suited! Hybrid models bring positive wellbeing benefits for workers, allowing women to balance work and domestic schedules. However, we need to be cautious about visibility at work and that out-of-sight working from home does not translate into out-of-contention workers when it comes to promotions and rewards.

In short, there are sound reasons for believing that Gen Z will be ready-made for advanced manufacturing. To capture the benefits, advanced manufacturers need to understand this audience. They must ensure messaging, imagery and marketing addresses some of the more unhelpful legacy images of their sector, treat their own values and story seriously, and deliver on EDI and flexibility.

Read the first entry in the the ‘future workforces’ series: ‘advanced manufacturing & Generation Z’.


References

[1] Francis, T. & Hoeful, F. (2018) ‘True Gen’: Generation Z and its implications for companies. McKinsey & Company.

[2] Gomez, K., Mawhinney, T. & Betts, K. (2022) Understanding Generation Z in the Workplace. Deloitte US.

[3] For example, The Manufacturer (2022) We need a super solution for fixing manufacturing talent issues (https://www.themanufacturer.com/articles/we-need-a-super-solution-for-fixing-manufacturing-talent-issues/)

[4] For example, Deloitte (2017) A look ahead: how modern manufacturers can create positive perceptions with the US public. (https://www2.deloitte.com/content/dam/Deloitte/us/Documents/manufacturing/us-public-perception-manufacturing-study.pdf)

[5] MAKE UK (2021) Manufacturing Our Recovery Through Inclusion (https://www.makeuk.org/insights/reports/manufacturing-our-recovery-through-inclusion)