Categories
Link Resources

Industrial strategy: a manufacturing ambition

The UK manufacturing sector is an essential contributor to the country’s economy generating £206bn gross valued added in 2022 a fifth higher than a decade ago. It accounts for around half our exports, two thirds of spending on research and development and accounts for a significant level of business investment. The sector employs around 2.6m highly skilled people across the UK, many of them in areas that need levelling up. In short manufacturing matters to the prosperity and security of the UK.

The sector is now at a critical juncture. Ten years ago Make UK (then EEF) set out its case for an industrial strategy. Since then we have had six plans for growth but now find ourselves without one.

There is broad agreement among stakeholders about what the UK needs for a successful industrial strategy. These can be broadly categorised into five themes, skills; infrastructure; finance; innovation and the business environment. To these can now be added significant shifts in the policy landscape from the post Brexit and pandemic landscape, the transition to net zero, rapidly accelerating technologies spinning out from the fourth industrial revolution and the political imperative to spread growth more evenly across the UK.

Categories
InterAct Blog

Putting the East Midlands at the heart of the future UK manufacturing ecosystem

The UK was at the heart of the first industrial revolution. Powered by coal, the UK was able to move from craft to mass production, creating new jobs, increased wages, and improved standards of living. Consumption driven economic growth was fuelled by huge increases in productivity. Key to the UK’s success, was its global access to raw materials, its local access to energy (coal), and innovation to develop the technology to enable the shift to mass production.

Little thought was given to the broader environmental and social considerations, with cities engulfed in smog, and children working in factories.   Over time, these issues were addressed but the long-term impact is only beginning to be fully realised.

We are now in the era of Industry 4.0, or the 4th industrial revolution. Initially a name for the German Government’s strategy, to reinvigorate German manufacturing post-2008 global economic crisis, the term has gained widespread popular appeal. At its core was the adoption of digital technologies to create the Internet of Things (IoT).  Over the last decade, with increased awareness of the environmental and societal impacts of consumption driven economic growth, it signifies a more fundamental shift.

There is increasing recognition of the need to decarbonise the manufacturing ecosystem if the UK is to meet its Net Zero 2050 goals. This is driving the adoption of low carbon energy sources, and more resource efficient methods of production. It is also creating a more fundamental change. United Nations Sustainable Development Goal (SDG) 12, identifies the need for more responsible consumption and production.

There is a pressing need to consider new models for economic and business development that decouple consumption from production.  Business models have traditionally been built on ‘linear economy’ models where raw materials are mined, converted into components, assembled into products, that are used, and sent for recycling, energy recovery and land fill at end of life. As consumers have valued newness over utility, and manufacturers have sought to make products as cheaply as possible, the ability to reuse, repair and remanufacture products has become more difficult. 

The future manufacturing ecosystem is built on the principles of a ‘circular economy’. An economy where we seek to keep products in their highest possible value state, through reuse, repair and remanufacture.  A future where recycling is a last resort.  Digital technologies enable the more effective monitoring of the physical location of assets, their condition and usage. They can also enable digital payment, and technical support. 

Innovation is key to supporting the transition to a more circular economy.  It starts with the innovation required to develop the new digital technologies to enable the transition. Innovation may be more transformational and involve the development of new business models. HP Instant Ink is a great example of how IoT technology in home printers enables the provision of home printing as a service.

For a fixed rate, subscribers can print an agreed number of pages per month with a guarantee that they will never run out of ink. The ink levels are remotely monitored, and new cartridges sent in the post when required. Used cartridges are returned to be refilled and reused. These new business models are often run in parallel with existing business models (e.g., traditional purchase of ink cartridges) that may use innovation to improve the productivity and sustainability of existing manufacturing processes or supply chains. 

At the heart of the UK manufacturing ecosystem, the Midlands can lead the UK in creating the first regional manufacturing ecosystem, that is low carbon and supports the principles of the circular economy.  Using innovation to create new business models, products, services, and technologies that enable economic prosperity in a responsible and sustainable way.   Through the Made Smarter Innovation (MSI) funded Interact Project, Loughborough University are working with key stakeholders in the region to develop a 2040 Future Digital Manufacturing Ecosystem roadmap for the Midlands.   Be part of the change, reach out and start to Interact.

Categories
InterAct Blog

Future workforces: advanced manufacturing & Generation Z

Forget some of the negative media hype and concern that you sometimes see from some social commentators and employers about Generation Z (Gen Z). Unlike us Boomers, Generation X and Millennials, Gen Z are the first truly ‘native’ digital generation, more tech savvy, nurtured on constant access to new technologies and more likely to be comfortable in the newly emerging worlds of digital manufacturing[1]

The high digital literacy of Gen Z offers many benefits for advanced manufacturers. They are more multi-skilled and able to execute (simultaneous) work tasks and roles across different digital platforms, while being more readily plugged into virtual and augmented realities[2]. As a workforce, they will be great for advanced manufacturing in the years to come; very likely to tell you that your technology and IT might not be as cutting edge (or confusing) as you thought. If this is not enough, given the right in-work supports – from ‘onboarding’ and beyond – they will allow manufacturers to create better value from problem solving, innovation, and creative roles using their digital toolboxes.

In many ways, the entry of Gen Z to the labour market is ideal for advanced manufacturers adopting new technologies, and their great potential to further change workplace people practices and business models. However, as in all happy(ish) marriages between the needs of employers and younger people’s lifestyle interests and skills, both partners may have some underlying issues that will make an effective relationship based on new technologies difficult to sustain unless they both work at it.

There should be no doubts about the high demand for digital skills in advanced manufacturing. Employers need to understand some key elements of Gen Z thinking and to build this into their recruitment and retention strategies. Ongoing staffing shortages, the seemingly blurring pace of digital and technological change, ‘quiet quitting’ and some issues with workplace upskilling have all helped to accelerate industry demand for digital and multi skilled workforces.

These changes have pitched advanced manufacturers into the ‘talent war’ to attract, retain and develop the most skilled and capable young people. Attracting and keeping the best talent, however, is highly competitive and many industries (including manufacturing) are reporting skill shortages and high levels of unfilled vacancies[3]. Very simply, manufacturers without the right set of people capacities (and practices to support these), digital skillsets, and multi-skilled workforces will struggle to capture and use those advanced technologies to help them compete and innovate.

These labour demand and supply issues pose some interesting questions about how UK manufacturers should be competing for Gen Z talent in terms of job quality. A downside? Well like Millennials they are very values driven and possibly sensitive to your image as an employer on social media. Image matters for the new generation. For advanced manufacturers, one major challenge is the problem with some of the wider UK manufacturing sector. This comes with some powerful historical baggage.

Manufacturing is sometimes be seen by young people in the UK and US as an old-fashioned industry, low paying and male-dominated, offering large numbers of dull, insecure, and dead-end shifts in factory jobs[4]. Forget those images you may have in your head about the emerging SMART factories of the near future, this legacy persists, particularly among the older population segments who remember it and whose opinions may negatively shape their children and grandchildren looking for jobs and careers in today’s labour market. They are not flattering perceptions of a sector looking to recruit ambitious and creative digital talent or even broaden its appeal among older or mid-career workers, or people in under-represented groups such as women and minorities.

On a positive note, these perceptions are very unlikely to match the reality of many or most modern advanced manufacturing settings, particularly in big multinational companies and those who‘ve adopted and transitioned into digital technology. These settings offer (less monotonous) more interesting, exciting, highly technical and financially rewarding work. The recruitment messaging needs to dispel the old legacy of your sector, show the augmented reality, the AI of the bots, the predictive and the multi-purpose data analytics, and whatever metaverse you can conjure.

Apart from showcasing exciting, innovative clean tech, what else should manufacturers be doing to better attract and retain Gen Z talent? There is no shortage of commentary on what Gen Z expect in the workplace, so let’s take three of the more important issues that often feature in wider discussions about them: values, diversity, and flexibility. Helpfully, all of these things connect with each other.

We know that an employer’s image, brand, reputation, prestige, mission, vision and values really matter in recruitment, commitment and retention. Its’ not just about pay, it really isn’t. Values make a big difference in competitive labour markets with restrictions on supply. Potential recruits and employee’s want to know something about your identity and values: how these resonate through your products, people practices, and culture.

Ideally, younger employees want to share in the positive impact and success of your business, be ‘proud’ to work for you and share that in their social media networking and posts. This means that the backstory (and the ‘future-story’) of who you are as an industry, sector and employer is a key part of attracting and keeping the brightest, the capable and the digitally skilled. You can be as sceptical (or ‘boomer’) about this as you like but realising the importance of the ‘image’ and what you stand for, and how you show and tell people your story is something that. For example, big UK-based multinational manufacturers who compete across international markets understand very well. It works.

Your values should set the tone for a whole series of complimentary policies and practices at work that help young people see meaning and purpose in their work. For advanced manufacturers, investing in people, developing their skills and caring about their wellbeing play very well to younger and early career audiences who will still be unsure about their place in the labour market.

A focus on Net Zero and the principles of the circular economy has a strong appeal to the wider social values of many young people keen on environmental messaging and actions around reducing waste and your carbon footprint. Employer values tell people what you care about: whether you look at your workforce as individuals and people; whether you care about their wellbeing and development; and whether you really are asking them to help make ‘useful’ products and have processes that are helping to make a more sustainable world.

Employer values and practices also feed into areas like diversity and being clear about your recruitment messaging. Why is diversity important? Well it isn’t about the numbers of women in your workplace, or those coming through the STEM pipeline. Research shows that gender diversity in manufacturing leads to greater innovation and profitability, and the benefits of having women in leadership positions are even greater. In other words, the implications of diversity (and more representative workforces) seem to be reasonably clear. The more diverse you are as a workforce and the more this is represented in the higher strategic decision making levels of companies, the more you will be likely to be able to harness these different views and experiences, produce better products more geared to different customer segments and better innovate than your competitors.

You can disagree about the need for diversity but the figures tell a different story. Manufacturers need to be much more proactive (and transparent) about equalities, diversity and inclusion at work, particularly when it comes to gaining ‘fair opportunities’ for career progression. Gen Z are more racially and ethnically diverse than previous UK cohorts and there has to be a bigger focus on minorities, and on women.

Only around two-thirds of manufacturing firms currently have an EDI strategy or even an intention to develop one and not surprisingly, minorities only make up 5% of boards and women only 18%[5]. Both groups still largely occupy supporting administrative and clerical roles, or in HR and marketing: far removed from key areas of senior management, making executive decisions and having a strategic influence in their firms. On these figures alone, you would be doing well to describe manufacturing as offering modern, equitable and progressive working environments. For Gen Z talent looking for employers who mirror their personal and social values around racial, ethnic and gender equality, these numbers will make depressing reading.

So how do you address this? At the very least, sense-check or independently audit the recruitment messaging to make sure you are maximising your appeal. In terms of the career progression of women and minorities there are also a few useful ways of addressing some of the internal cultural barriers that they face in moving into senior management roles: mentoring and sponsoring. To some these approaches are probably not as ‘bombproof’ as deciding promotions out with the lads on the golf course, but they are likely to be more effective in helping the business keep good talent.

One popular (post-pandemic) way of addressing the diversity issue concerns giving people greater flexibility at work, through re-designed shift schedules and working from home. Easier said than done for production staff than their non-production co-workers. There are certainly strong hints in the literature that greater flexibility and hybrid working (with some task autonomy) is very well suited to Gen Z workers. Perhaps too suited! Hybrid models bring positive wellbeing benefits for workers, allowing women to balance work and domestic schedules. However, we need to be cautious about visibility at work and that out-of-sight working from home does not translate into out-of-contention workers when it comes to promotions and rewards.

In short, there are sound reasons for believing that Gen Z will be ready-made for advanced manufacturing. To capture the benefits, advanced manufacturers need to understand this audience. They must ensure messaging, imagery and marketing addresses some of the more unhelpful legacy images of their sector, treat their own values and story seriously, and deliver on EDI and flexibility.

Read the first entry in the the ‘future workforces’ series: ‘advanced manufacturing & Generation Z’.


References

[1] Francis, T. & Hoeful, F. (2018) ‘True Gen’: Generation Z and its implications for companies. McKinsey & Company.

[2] Gomez, K., Mawhinney, T. & Betts, K. (2022) Understanding Generation Z in the Workplace. Deloitte US.

[3] For example, The Manufacturer (2022) We need a super solution for fixing manufacturing talent issues (https://www.themanufacturer.com/articles/we-need-a-super-solution-for-fixing-manufacturing-talent-issues/)

[4] For example, Deloitte (2017) A look ahead: how modern manufacturers can create positive perceptions with the US public. (https://www2.deloitte.com/content/dam/Deloitte/us/Documents/manufacturing/us-public-perception-manufacturing-study.pdf)

[5] MAKE UK (2021) Manufacturing Our Recovery Through Inclusion (https://www.makeuk.org/insights/reports/manufacturing-our-recovery-through-inclusion)

Categories
News

Making Things Work: Public Perceptions of UK Manufacturing 2023

In February 2023, the InterAct team based in the Business School at Strathclyde University conducted an online survey asking the opinions of a representative sample of 2100 people across the UK what they think about the attractiveness of modern manufacturing jobs and careers. Their survey is topical and timely, offering academics, policy makers, trade bodies, industry commentators and employers a fresh and stimulating in-depth insight into public opinion about working in this sector at the present time and in the future.

They are primarily interested in what factors shape people’s views on UK manufacturing but we know very little about how people of different gender, ages and ethnicities look at the sector and as a potential career destination of ‘choice’. We know that manufacturing may be associated with some older perceptions of repetitive and insecure job but Industry 4.0 (advanced digital manufacturing) potentially changes future jobs and careers in the sector with a bigger emphasis on having people with innovation, problem-solving, creative and digital skills. To achieve this (and competing against other industries), advanced manufacturers will have to broaden the appeal of the sector to younger or mid-career workers, and people in under-represented groups such as women and minorities.

They asked the UK public questions on some key issues and big debates: the importance of the manufacturing sector for the wider UK economy; the ‘quality’ of manufacturing jobs; and about what work may look like in the years ahead. Will some manufacturers have to give more thought to how they invest in people and support worker engagement, wellbeing and skills? Will new advanced digital manufacturing technologies offer more interesting and rewarding jobs and careers? Alternatively, will more technologies, robotics and AI just generate concerns about jobs, downskilling and security?

These are all key questions that will resonate with a range of audiences. Our survey will stimulate debate, not just about what people think of UK manufacturing today and what factors help shape their interest, uncertainty or antipathy, but what may lie ahead when the emerging worlds of SMART factories, co-bots and augmented reality are drawing ever closer to our workspaces.

The team is looking to stimulate some further debate on the Future of Work in manufacturing. They welcome comment and opinion from a range of industry stakeholders: academics, policy makers, employers and trade unions.

The survey findings will be available in April/May 2023. Before this, they will be publishing a series of short blogs and commentary on some key future of work debates in UK manufacturing. The first of these – ‘Future Workforces – Advanced Manufacturing & Gen Z’ is now available to read.

Categories
InterAct Blog

Supply chains need buoyancy, not just resilience

Pre-pandemic, businesses were already working through the challenges of a VUCA world – where volatility, uncertainty, complexity, and ambiguity in general conditions and situations were often seen. Faster technological changes, digitization, shortening product life cycles, rapid changes in consumer preferences, and political changes all contribute to this view.

The events of the last three years have created even more instability in Supply Chains, and resilience is now a key topic of debate. We can define resilience as the “capacity to recover quickly from difficulties,” but this implies a return to how things were rather than a new, constantly changing paradigm. It is the challenge of an increasingly uncertain future that forces the question of Supply Chains’ purpose and how they should be designed, governed, and operated to continue running productively in the face of whatever challenges are thrown at them.

Just as a ball will float in a storm on the sea, so must our Supply Chains! They need to be buoyant.

Purposeful Supply Chain design

The purpose of a Supply Chain is to get products to people who need them, when they need them, and at an affordable price. This is the definition of a productive Supply Chain.

supply chain productivity model

This should be done sustainably and responsibly. Supply Chains often operate in a non-responsible way, presenting numerous examples of unfairness in the distribution of value along the chain. The control of data and information is a key enabler of negotiating power plays between parties – it is incredibly challenging to get two entities to collaboratively plan just for mutual benefit.

Large enterprises often optimize their operations to the cost of their SME suppliers. From a Supply Chain finance perspective, the bigger players have better credit terms but pass the risk and costs to their supply base – increasing their own cost and risk and leaving the Supply Chain sub-optimized.

Key supply chain design considerations

As part of a Business Model Design, product and marketing strategies should inform and drive Supply Chain strategy and ensure strategic alignment.

supply chain business model design

In a fast-moving consumer goods context, the Supply Chain design requirements for an everyday low-price (EDLP) pricing strategy with relatively stable demand differs from one with deep-dive Hi-Lo promotions and unpredictable demand. The challenge of the Supply Chain design is that within the life cycle of assets, a business may switch between EDLP and Hi-Lo many times. If the design is optimized for EDLP or has high predictability, there will be issues!

The design principles need to work through the infrastructure and operating model to deliver the necessary level of structural flexibility and dynamic flexibility.

Structural flexibility concerns the infrastructure and set-up of the physical Supply Chain and the assets. This includes:

  • in-house capacity
  • outsourced manufacture capability
  • multiple supplier capability
  • geographic location (in-country, near-shore, off-shore)
  • the option to extend or move nodes in the supply chain.

Dynamic flexibility focuses on the operating model – how the physical assets will be managed. The model covers the following:

  • business processes
  • governance and decision rights
  • organizational design
  • performance management processes (e.g. who determines the levels of stock, where it should be held, and the approval processes for those decisions).

Orchestration and synchronization of the Supply Chain are critical enablers for ensuring it is as productive as possible. This is achievable by maximizing flow through the Supply Chain and rightsizing the buffers for stock and spare capacity.

Actions are driven from the source

The signal from the head of the chain closest to the point of final demand should drive actions across the whole chain. Essentially, interactions between business entities within the Supply Chain should be principally taken from a planning perspective rather than a procurement perspective.

There is a need to understand the constituent elements of the buying demand behavior, such as surge and base volumes, to inform the decisions taken in the chain. For example, increased demand for mobile phone gifts may be seasonally driven by Christmas versus purchases for birthday presents or end-of-contract replacements, which are more likely to be spread throughout the year.

A segmentation approach to the demand signal is required to determine the right supply action – an example being the setting of production wheels within a factory or a runners/repeaters/strangers approach to planning.

supply chain flexibility model

Decisions on the required level of dynamic and structural flexibility are critical for businesses. There is a direct cost for resilience as businesses choose to move to lower-cost, more efficient Supply Chains from ones more sensitive to shocks. The positive financial impacts are facilitated by delivering a more responsive approach. An adaptable Supply Chain model, in short, brings new capabilities into the network.

We can consider this cost in a similar way to an insurance premium. Business cases for resilience will be needed – but how is that developed, measured, and articulated against traditional business cases optimized to ROI cash? A traditional business case based on a single number and set of assumptions is inadequate for the unknown storms which may lie ahead. They must incorporate tolerance for different assumptions to give range and richness to thinking.

A balanced response enabling flexibility

Business processes need to develop. One example would be the S&OP process. A traditional S&OP process focuses on dynamic flexibility – aligning Sales and Supply Chain plans to meet demand – often over a relatively short time frame. So, what is the trigger for a structural network design change? How would a review of structural flexibility sit alongside the S&OP process?

Supplier resilience strategies also need development. If one of the needs for structural flexibility is multi-sourcing – how will volume be allocated? Will businesses pay for suppliers to be ready to supply (just in case they are needed), even in a high-inflation economy? Supplier relationship management will need to develop longer-term, more collaborative processes rather than playing a zero-sum transactional game where the price is the key focus.

Top tips for improving Supply Chain flexibility and resilience

So, what are the actionable insights?

  • Commercial and Supply Chain Strategies need to work together over the lead time for structural flexibility.
  • Creating the capability to react to unknown future Supply Chain shocks will increase upfront costs. This needs to be reflected in business cases. Scenario evaluation tools provide insight into the decision-making process.
  • Design for uncertainty and segment the Supply Chain. Actively manage the inventory and capacity buffers to enable a stable beat.
  • Collaboration for network orchestration, both within and between enterprises, needs visibility of data across end-to-end Supply Chains. The use of advanced planning systems is an enabler for decision-making. Procurement’s role and behavior are likewise critical to supplier relationship management.
  • Businesses need to develop collaboration and governance processes for business process design and decision-making. Self-sufficient, empowered teams are enablers for dynamic flexibility.

One of the lessons from the last five years within Supply Chain management is that simply being resilient to recreate the previous conditions and Supply Chain set-up is no longer sufficient for future success. Teams constantly battle from one shock to another – and this is not sustainable. A reactive way of working creates burnout and costs businesses money.

Businesses must actively decide the right level of dynamic and structural flexibility they need. This creates the required capabilities, so they can bounce back from Supply chain Disruptions, use the next crisis to produce opportunities, and create competitive advantages.

Supply Chains need buoyancy, not just resilience.

Ready to learn more?

The insights in this blog are taken from our Innovating Profitable Manufacturing Supply Chains with Resilience webinar organised by
Board International

Watch it on-demand now to take a deeper dive!

Categories
InterAct Blog

Making investments into digitalisation – the manufacturer’s perspective

Digitalisation offers significant opportunities for manufacturers. By leveraging digital technologies and data, manufacturers can generate substantial efficiency gains in their own processes, create new forms of value for their customers, and develop innovative business models. These digitalisation opportunities are critical to address the productivity and sustainability demands the manufacturing industry is facing.

Although the range of opportunities digitalisation offers to the manufacturing industry is widely recognized it is of concern that only 35% of surveyed firms have adopted digitalisation solutions at scale[1]. One of the root causes of the lack of adoption in the UK is the lack of investment[2]. According to the Manufacturing Digital Productivity Report from iBASEt[3], 94% of UK manufacturers believe their industry has already fallen behind the US because of a lack of investment into digitalisation, and more than half of UK manufacturers are losing sales as a result. It is even more worrying that 93% of respondents expect that this lack of investment into digitalisation will lead to many UK manufacturers going out of business in the next decade.

To help manufacturers invest effectively in digitalisation, it is important to understand the range of challenges manufacturers commonly face. Only then can the appropriate solutions be identified and put in place. Aston University used a systematic review method to study the challenges for manufacturers and identify critical questions. The results are summarised in Table 1 and discussed below.

Digitalisation goalsThe lack of agreement on the goals of digitalisation encumbers the investment process.
The lack of ambitions in the goals of digitalisation limits the leaders’ ability to justify significant investments.
Investment processDigitalisation integrates a wide scope of investment domains which makes it difficult to apply established processes to assess and prioritise investments. 
The metrics used to evaluate business cases for investment do not relate to the opportunities that are particular to digitalisation.
Digital technology attributesThe high cost of digitalisation and the high uncertainty of return make it difficult to justify investments.
The rapid innovation (and obsolescence) of digital technology acts as a discouragement to making substantial investments.
People and their expertiseThe lack of expertise on acquiring external funding for digitalisation creates an investment barrier.
The lack of senior leaders with digitalisation expertise hampers investments into digitalisation.
Organisational cultureThe difficulty of accepting investment uncertainties inhibits investments into digitalisation.
The lack of openness and trust creates barriers to making effective investments into digitalisation.
Business networkThe lack of digital readiness of the wider network limits investments into digitalisation.
The lack of experienced or relevant finance partners reduces the opportunities for making investments into digitalisation.
Table 1. Challenges for manufacturers investing in digitalisation
Digitalisation goals

In manufacturing, digitalisation affects a wide range of stakeholders and they all feed into the development of the goals. The lack of a specific and widely agreed goal is a critical barrier to making investments into digitalisation.

Digitalisation offers manufacturers opportunities to significantly change how they operate, what kind of relationship they have with their customers, what products or services they offer and who they offer these to. However, many manufacturers restrict their goals to incremental changes and, therefore, struggle to justify making the necessary investments.

Investment process

Digitalisation cuts across established investment categories as it involves aspects of R&D, employee training, and education, as well as the acquisition and implementation of technology solutions. The multi-dimensional nature of digitalisation challenges the traditional investment processes of manufacturers.

Manufacturers traditionally rely on internal rates of return or net present values to justify their investment decisions, and these are not well suited to the possibility of dynamically adjusting an investment after it has been initiated. With digitalisation opening future and potentially unknown opportunities, metrics are required that reflect the flexibility to adjust an investment, change a technology or even abandon it.

Digital technology attributes

The research identified the high costs of required technologies as a major reason that manufacturers do not carry out investments into digitalisation. The cost of technology is particularly high to early adopters, before economies of scale are achieved. Furthermore, while digital solutions are highly scalable, the returns on investments are limited if scale is not achieved.

The pace at which digital technologies develop is unprecedented. Any technology manufacturers choose could become outdated rapidly and require updating, which increases costs. Manufacturers may, therefore, decide to wait for the next digital technology generation to become available or for further standards to emerge before making investments.

People and their expertise

To make significant investments requires manufacturers to raise external finance; but manufacturers often lack the expertise to raise external finance for investments into digitalisation, which significantly differs from raising finance for investments into capital equipment: it requires different funders, business case details and preparations.

Also, decisions on investments in production machinery are often made at the plant level, and are aligned with responsibilities for performance and quality. As digitalisation affects the direction of manufacturers, with implications for their customers and wider networks, identifying the right locus of decision-making is critical for making effective investments. It requires a senior leader with the authority and expertise to make such wide-reaching decisions.

Organisational culture

Creating value with digital technologies requires product and process experimentation following test-learn-tweak cycles. Organisations need to develop a ‘tolerance for uncertainty’ to make effective investment decisions within this context. For manufacturers with limited R&D activities, dealing with these uncertainties is particularly difficult.

Although digitalisation will require changes in organisational roles and processes, the creativity and imagination of staff members across the organisation need to be drawn on to capture the opportunities presented. It is critical to ensure that digitalisation is not perceived as a cost-cutting exercise aiming to create redundancies to ensure the widespread support and effectiveness of investments.

Business network

It is not only the manufacturer’s own investment into digitalisation but also that of their customer and wider network that is critical to making an effective business case. Ultimately, value is co-created by the customer and the wider network, and if these parties do not make investments into digitalisation themselves then the manufacturer’s chances of deriving a return from their investments are reduced.

Making investments into digitalisation also puts a focus on the external finance partner as a member of the network. Finance partners are often overlooked in industrial value networks, but in a digitalisation context their role is critical. This is because these partners are not just financing a machine but also a business process or business development, which requires a much closer relationship.

Making effective investments into digitalisation is a critical challenge for manufacturers. These investments not only determine the success of current digitalisation initiatives but also affect the viability of future digitalisation journeys. It is today’s investments into digitalisation that enable the future competitiveness of the manufacturing industry. Manufacturers need to rethink their established investment processes and organisational practices as many of them stand in the way of making effective investment decisions into digitalisation.


References

[1] https://stories.ability.abb.com/better-decisions

[2] https://www.makeuk.org/-/media/files/insights/reports/infor-make-uk-innovation-monitor-report-final.pdf

[3] https://info.ibaset.com/hubfs/ibase_PDM_090522.pdf

Categories
InterAct Blog

Actionable insights from the past: what can we learn from history in the new industrial transition?

Consider a company like Mueller Inc, an American manufacturer of steel buildings and metal roofing, among other things. Prior to their digital transformation, they were facing multiple issues. Their open-source management system lacked flexibility and their online presence was outdated. The buyer journey was far from clear, and customers needed to visit stores to complete purchases. In short, their future seemed increasingly uncertain. Could the answer to these dilemmas have lain in the past?

***

‘History is the teacher of life,’ goes the saying of the Roman statesman Cicero. But is that still true? More to the point, can it be true in this period of the Fourth Industrial Revolution when the rate of innovation far outstrips anything seen during previous industrial revolutions?

Our project for InterAct, undertaken by teams at Aston and Cranfield, is currently testing the hypothesis that historical examples provide actionable insights for contemporary manufacturers, and that manufacturers can leverage such histories as they adopt the next generation of industrial technologies. Our preference is not to talk about revolutions, but rather about transitions: periods of occasionally spectacular innovation, followed by a halting or gradual readjustment across industry, with occasional sallies back into earlier practices or technologies. Industrial transitions are less like sudden grand revolutions and more like the stop-start evolution of our own lives. As Melvin Kranzberg, one of the pioneers of the history of technology, said “Technology is a very human activity.”

Discovering actionable insights in history

For our project, the team at Cranfield set out to tackle a systematic search of literature about the challenges of digitalisation in industry, finding and analysing 278 articles. Most of the present-day challenges they identified concerned questions of technical innovation, marketisation, or the future of employment.

The Aston team (the authors of this blog post) set out to look at mechanization (18th and 19th centuries), electrification (late 19th and 20th centuries) and computerization (20th century) – the earlier processes of industrial transition.  What was clear from their review, however, was that the spectrum of industrial transition challenges is a lot broader than the perceived issues around technology and its monetisation. In this light, it is reasonable to argue that understanding digitalization needs a wider field of vision, one that is broadened by history, to tackle the challenges of the future and avoid the mistakes of the past.

By widening their field of vision through cases from history, we argue that today’s manufacturers have the chance during this digital transition to increase their appreciation of the potential risks and opportunities that lie ahead, and perhaps even stimulate creative solutions to them. Our historical case search reveals that there are dozens of issues that merit attention both within manufacturing operations (new safety questions, choices of innovation pathways, naivety about technical solutions) and outside of them (the power of location, globalization and culture, negative social consequences of innovation) which hardly figure on the lists of challenges for digitalization.

***

Returning to Mueller Inc’s dilemma, perhaps inspiration could have been found in historical cases such as the electrification of Zurich’s streetlighting. Over 100 years ago, the town council’s dilemma was whether to invest in AC, DC, or their alternatives. There was little room to manoeuvre, and the recently installed gas-powered streetlighting could have risked looking like an expensive mistake.

Zurich’s response, however, was to focus on stakeholders and to choose the technology that would be more affordable and scalable – AC as it happened – allowing the city to grow by serving surrounding populations more effectively. The solution was technically elegant, but above all politically savvy. Likewise, our friends at Mueller Inc did not focus on which technology was best in its class, but on which digital solution would help their customers achieve their needs. The company opted to move their business to a major digital platform that greatly improved the customer experience while providing big data and analytic tools for their management.

Categories
InterAct Blog

Distributed leadership as a route to innovation and productivity in advanced manufacturing

New ways of working and leading in manufacturing

Advanced technologies such as robotics and AI, and other forms of digital innovation, open up important new opportunities for the transformation of work in UK manufacturing, with potential benefits for employees in terms of job quality and wellbeing, and for businesses in terms of improvements in productivity and innovation performance.

However, there are concerns that these benefits may not be fully realised if manufacturing businesses fail to innovate their leadership and people management practices to empower people to deploy technologies in an agile and effective way. Our research for the ESRC InterAct Network is working with manufacturing businesses to explore exactly these issues; what sort of changes in work organisation, people management and leadership are required if manufacturing employees across teams are to contribute to driving innovation and productivity?

One important clue as to what’s needed in leadership development might be provided by an emerging evidence base on the impact of ‘distributed leadership’ practices. 

Distributed leadership and empowering people to innovate

One potential constraint on innovation in organisations is the concentration of leadership roles and authority among a small cadre of senior managers. That’s why in a range of organisations, especially in public services such as education and healthcare, there is growing interest in the value of an alternative approach of distributed leadership: “an approach to leadership that endorses work practices that combine knowledge, abilities and skills of many individuals… creating opportunities for leadership to emerge from individuals at all grades and levels within a team or organisation”.  For example, Professor Graeme Currie and colleagues have argued that effective distributed leadership has been, and will continue to be, crucial to healthcare systems’ responses to the Covid-19 crisis.

It’s interesting that much of the current research on the challenges and opportunities of distributed leadership focuses on public services and other service sectors, with somewhat less interest from those studying manufacturing innovation. This is despite the fact that some of the seminal research on distributed leadership focused on its impact in manufacturing – more than thirty years ago, David Barry’s important research on so-called ‘bossless teams’ identified both opportunities in supporting team innovation performance and challenges where team members lacked the skills and resources to lead effectively. David Teece’s seminal work on dynamic capabilities – “the firm’s ability to integrate, build and reconfigure internal and external resources to address and shape rapidly changing business environments” – is another cornerstone for our research. It is notable that Teece and colleagues also cite distributed leadership as an important practice for dynamic and agile organisations in manufacturing and other sectors.

So, what sort of practices might be required for effective distributed leadership, and what are the potential benefits and risks for manufacturers?

Scoping the potential for distributed leadership as a route to innovation

InterAct Network researchers will be working with leading manufacturers in the coming months to explore what works in effective distributed leadership. But we already have some clues from existing research. Where distributed leadership has contributed to productivity and innovation, organisations have tended to make workplace investments to: develop leadership skills and identify succession pathways; re-design job roles to enhance autonomy; and create protected time and real or virtual spaces for leaders at different levels to collaborate and share ideas. The evidence suggests that these practices might be important, but also that context is crucial. Distributed leadership needs to be calibrated carefully to reflect the needs and capabilities of each organisation.

There are also potential challenges associated with promoting distributed leadership that need to be addressed, including: the risk of a fragmentation of accountability and unclear decision-making; gaps in leadership skills and capabilities; and limits to the time and resources available to people at different levels to participate in leadership activities.

A key theme for our InterAct research in the coming months will focus on how, and how effectively, some of our most innovative manufacturers adopt more distributed models of workplace and organisational leadership; the challenges and limits to such practices; and impacts in terms of job quality and innovation performance.

If you represent a manufacturing organisation and would like to share and learn from good practice in leadership and people management for innovation, join the InterAct Network today.

If you would like to access our free research on leadership and people management for innovation in manufacturing, contact: colin.lindsay@strath.ac.uk.