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Abstract— The manufacturing sector is a vital component of most
economies, which leads to a large number of cyberattacks on organisations, 
whereas disruption in operation may lead to significant economic 
consequences. Adversaries aim to disrupt the production processes of 
manufacturing companies, gain financial advantages, and steal intellectual 
property by getting unauthorised access to sensitive data. Access to sensitive 
data helps organisations to enhance the production and management 
processes. However, majority of the existing data-sharing mechanisms are 
either susceptible to different cyber-attacks or heavy in terms of 
computation overhead. In this paper, a privacy-preserving data-sharing 
scheme for smart utilities is proposed. First, a customer’s privacy 
adjustment mechanism is proposed to make sure that end-users have 
control over their privacy, which is required by the latest government 
regulations, such as the General Data Protection Regulation. Secondly, a 
local differential privacy-based mechanism is proposed to ensure privacy of 
the end-users by hiding real data based on the end-user preferences. The 
proposed scheme may be applied for different industrial control systems, 
whereas in this study, it is validated for energy utility use case consisting of 
smart intelligent devices. The results show that the proposed scheme may 
guarantee the required level of privacy with an expected relative error in 
utility. 
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1. Introduction

The manufacturing sector, which is the backbone of world economies, experiences 
a large number of cyber-attacks that are performed by attackers to disrupt production 
processes, compromise, or steal sensitive information, and gain financial advantages. By 
integrating Information Technology (IT) and Operational Technology (OT) systems, 
organisations open new avenues for adversaries. Vulnerabilities in the manufacturing 
sector may be caused by different factors, such as the economic impact of disruption, 
legacy systems, and the integration of IT and OT systems. The results of cyber-attacks 



range from financial losses and compromised intellectual property to the disruption of 
operation processes. 

More than 75% of organisations in manufacturing sector unpatched Common 
Vulnerabilities and Exposures (CVEs), whereas nearly 40% of these organisations 
suffered malware infections in 2022 [1]. Cloud adoption within the manufacturing sector 
has become a solution to support remote workers. Around 38% of respondents 
experienced an account compromise at least one, whereas the average for all other 
industries was around 31% [2]. According to the report [3], around 85% of organisations 
had very little visibility into their OT environments, where 77% of organisations had 
poor network segmentation, 70% had outside connections to their Industrial Control 
Systems (ICSs), and 44% of companies shared credentials between IT and OT systems. 

In this work, a smart utility environment is considered as a use case of the proposed 
approach, whereas the proposed model can be applied across all utility infrastructures. 
Manufacturing companies produce components that are used by smart utility companies, 
as well as industrial Internet of Things (IoT) devices, such as smart meters that are 
deployed on the end-users’ side. In this specific use case, the end-users’ energy usage 
data that are generated by the smart meters should be protected from any types of cyber-
attacks. Although access to utility usage data brings many benefits, there is a number of 
challenges regarding end-users’ privacy. These data are considered as “personal data”, 
which means that the operation of smart meters within the EU must be in line with the 
General Data Protection Regulation (GDPR) [4]. Currently, security and privacy of the 
end-users and their data are highly prioritised in many countries including EU [5], UK 
[6], [7], Australia [8]. 

Differential Privacy (DP) has become one of the most popular approaches to ensure 
privacy of end-users’ data, and it is widely utilised both in academia and industry. By 
utilising DP, controllable noise is added to the original data, thus hiding the sensitive 
data from other parties. Most of the existing DP-based schemes do not allow the end-
user to control the level of privacy. To fill this gap, this paper proposes a Local 
Differential Privacy (LDP)-based data-sharing mechanism that preserves privacy of the 
end-users, whereas the end-users are able to control the level of privacy. The main 
contributions of this paper are as follows: 

• A mechanism that allows end-users adjust and control the level of privacy
(privacy budget) based on their preferences.

• A data-sharing scheme that utilises local differential privacy to ensure privacy of
end-users’ sensitive data.

The rest of this paper is organised as follows. Section II summarises the related 
works. The system model of a smart utility environment is presented in Section III. The 
proposed data-sharing scheme is presented in Section IV. Simulation results are 
presented in Section V. Finally, the conclusion is given in Section VI. 

2. Related Work

DP has become a very popular technique to ensure data privacy by controlling the 
amount of noise added to the data. To reduce the risk of privacy leakage, Zhao et al. [9] 
proposed a strategy using differential privacy, which can protect end-users’ data from 
being stolen by other parties in the process of data exchange. Lako et al. [10] proposed 
differentially private algorithms based on the discrete Fourier transform and the discrete 
wavelet transform, whereas the noise is added on the aggregator’s side. To preserve an 



individual end-user’s privacy, Gai et al. [11] proposed a privacy-preserving data 
aggregation scheme that satisfies LDP based on randomised responses, where sensitive 
data are perturbed by randomised response on the end-user’s side. Although these 
schemes ensure end-users’ privacy, there is no option for the end-user to control the level 
of privacy, which is required by the regulations, such as [4]. In addition, there are only a 
few data-sharing schemes that propose to add noise on the end-user’s side. 

Another popular approach to ensure end-users privacy during the data exchange is to 
utilise cryptographic techniques, such as Homomorphic Encryption (HE). To address the 
issues regarding privacy and security in a fog-based environment, Zhao et al. [12] 
proposed a privacy-preserving data aggregation scheme using Somewhat Homomorphic 
Encryption (SHE), which requires a trusted authority that is responsible for the 
registration of different parties. To provide flexible and efficient data aggregation, while 
maintaining data integrity and data privacy, Qian et al. [13] proposed a lightweight data 
aggregation scheme using HE. Zhang et al. [14] proposed a lightweight and fault-tolerant 
data aggregation scheme using modified version of the symmetric HE, random masking 
techniques, and Shamir secret-sharing mechanism. To reduce the complexity of 
certificate management, as well as to enhance security and privacy of end-users’ data, a 
certificate-based data aggregation scheme is proposed in [15], which utilises 
homomorphic encryption. Although encryption-based data aggregation schemes ensure 
end-users’ data privacy, a trusted authority is required for registration purposes or 
distribution of secret materials. In addition, encryption-based schemes add additional 
computation overhead compared to the DP-based models. 

3. System Model

Fig. 1 shows the structure of a smart utility environment consisting of N end-users, a 
Data Communications Company (DCC) gateway, and grid operators including 
Electricity System Operator (ESO), Energy Suppliers (ESs), and Authorized Third 
Parties (ATPs). A Smart Meter (SM), which is deployed at the end-user’s side, measures 
the electricity consumption of the end-user, and submits the data to the Communications 
Hub (CH). End-users’ data are encrypted and sent to the grid operators through the DCC 
infrastructure. DCC has no access to end-users’ data because the data are encrypted using 
grid operators’ keys. ESs, ESO, and ATPs decrypt end-users’ data using their private 
keys to perform their tasks and manage the electricity grid. In case of a key leakage 
attack, or an insider attack on the operators’ side, privacy of the end-user might be 
disclosed, namely conclusions about the end-user’s behaviour might be drawn by 
accessing sensitive data [16]. To address this issue, this work allows end-users to set the 
required level of privacy, based on which a controllable noise is added to the original 
data before encryption. 

Let N = {1, 2, 3, ..., N} denote the set of the end-users, where n is the index of the 
end-user and n ∈ N, whereas the total number of end-users is given by N ≜ |N|. A smart 
meter that is deployed on the end-user’s side measures the electricity consumption in 
real-time and stores measurements in memory. The interval at which a smart meter 
records and stores measurements may vary depending on the smart meter model. In this 
work, a smart meter stores electricity measurements at the end of each time slot, where 
each time slot is of 30 minutes. This reflects the minimum time interval, at which a grid 
operator may access end-users’ data. Let T = {1, 2, 3, ..., T} denote the set of all time 
slots when electricity measurements are stored in a smart meter’s memory, where t is the 
time slot index and t ∈ T, whereas the total number of time slots is given by T = 48.  



Figure 1 System Model 

Let QDn denote the electricity consumption profile for the end-user n for one day, 
and it is defined as follows: 

QDn	=	{QDn1,	QDn2,	...,	QDnT},				n ∈ N (1) 

where QDnt is the level of electricity consumption for the end-user n in a time slot t and 
QDnt ∈ QDn. 

4. Proposed Scheme

In this section, a privacy-preserving data-sharing scheme for smart utility 
environment using local differential privacy is presented. A smart meter measures 
electricity consumption of the end-user and stores these measurements (QDnt) in 
memory. End-users have control over the level of privacy that affects the amount of noise 
added to the original data. After the noise is added, data are encrypted and sent to the 
grid operators. Thus, a smart meter stores the level of privacy set by user and utilises ϵ-
differentially private algorithm to modify electricity measurements before reporting 
them. 
Definition 1 (ϵ-local differential privacy). A randomised algorithm M: D → S satisfies 
ϵ-local differential privacy iff for any output s ∈ S, and two neighbouring datasets d, d′ ∈ 
D: 

(2) 

where Pr[M(d) = s] is the probability of the mechanism M outputting the result s given 
the input d, S is the set of all possible outputs that an algorithm M can produce, and ϵ is 
the privacy budget that bounds the probability of M outputting the same result for any 
pair of values d, d′ [17]. A smaller value of ϵ provides stronger privacy guarantee, and 
larger ϵ provides weaker privacy guarantee. Two datasets (d, d′) are called neighbouring 
datasets, iff d′ can be produced by adding, removing, or modifying exactly one element 
from d. Let f: D → R denote the function that maps datasets (D) to real numbers. In this 
work, f outputs the mean of electricity consumption readings (QDn) of the end-user n for 
one day, which is expressed as follows: 



(3) 

To introduce required noise to the result of a query (f) on individual dataset d, Laplace 
mechanism that relies on the sensitivity (L1-sensitivity) of f is used. 
Definition 2 (L1-sensitivity). Given a query function f (·), its L1-sensitivity ∆f is the 
maximum L1 distance between the results of f over any pair of neighbouring datasets d 
and d′, which can be expressed as follows: 

(4) 

The Laplace distribution is one of the most popular mechanisms to introduce noise 
to the result of a query function f. The probability density function of the Laplace 
distribution centered around 0 with the scale factor b = ∆f/ϵ is defined as follows:  

        (5) 

The LDP mechanism (M) using the Laplace distribution generates and injects the 
random noise drawn from the Laplace distribution to query function f, whereas the scale 
of the noise is calibrated due to the sensitivity of f. The Laplace mechanism preserves ϵ-
local differential privacy, and is defined as follows: 

 (6) 

Let  denote the maximum historical sensitivity for the end-user n, which is 
stored in a smart meter’s memory. At the end of the day, a smart meter calculates the 
sensitivity of f based on the measurements of electricity consumption (QDn) recorded 
during the day. First, all the possible modifications of a dataset d (d = QDn) are generated 
by removing entries one-by-one from d. Let D′ ={D′1, D′2, …, D′K} denote the set of all 
possible modifications of an original dataset d, where k is the index of a modification and 
k ∈ K, whereas the total number of modifications is given by K ≜ |D′| = T (T − 1). 

By iterating over D′ and calculating the sensitivity for all possible pairs of 
neighbouring datasets, a new sensitivity  is obtained and stored in a smart meter’s 
memory if . It should be noted that to reduce the memory usage, a 
smart meter may generate the modifications of the original dataset d one-by-one.  

Each end-user has control over the required level of privacy. In other words, the end-
user may adjust the privacy budget parameter ϵ based on his preferences. If the end-user 
decides to set ϵ to be a small value, it will provide strong privacy guarantee, which affects 
the quality of the services provided by grid operator, such as an electricity bill that is 
provided by ES. Otherwise, if ϵ is set to be a large value, it will provide weak privacy 
guarantee, while the quality of the services provided by the grid operators will be better. 
Thus, the end-user may decide on privacy versus utility by tuning the privacy budget ϵ. 
Let ϵn denote the privacy budget determined by the end-user n. Each end-user may set 
different privacy budgets for each day of a week or set one privacy budget for a 
workweek and another for a weekend depending on circumstances. By combining the 
end-user’s privacy budget ϵn, the sensitivity ∆fnmax, the proposed local differential private 
mechanism may be defined as follows: 

(7)



where x is the electricity consumption profile for the end-user n for one day. Since a 
query function f produces the mean of electricity consumption readings, a grid operator 
needs to multiply the mean value by T to get the total electricity consumption for the 
end-user n in a particular day. Let Cn denote the total energy consumption for the end-
user n for one day, which a grid operator (ES) receives. Let Pn denote the energy usage 
cost for the end-user n for one day, which can be calculated as follows: 

Pn = Cn ∗ λbuy             (8) 

where λbuy is the buying price of energy from the utility grid in a particular day. It has 
to be noted that in this work, a simple energy usage cost calculation is used to show how 
the privacy budget set by the end-user affects the quality of the services provided by a 
grid operator (energy supplier). 

5. Results

This section presents the simulation results to evaluate the proposed LDP-based data-
sharing scheme for a smart utility environment, which consists of 50 end-users (N = 50) 
using real electricity consumption data from [18]. Fig. 2 (a) shows the electricity 
consumption for two randomly chosen end-users for one day. An increase in electricity 
consumption for the User 2 can be observed at 10 a.m. and at 4 p.m., which means that 
the User 2 is highly likely at home and uses some appliances. Conversely, the electricity 
consumption for the User 1 does not change significantly during the day. Based on the 
electricity consumption data for the User 1, someone could conclude that nobody is at 
home turning appliances on and off, which discloses the User 1 privacy. Thus, User 1 
may decide to increase the level of privacy by adjusting the privacy budget ϵn. 

Figure 2 (a) Electricity consumption for two randomly chosen end-users for one day 
(b) Dependency of the change in electricity consumption on the privacy budget (ϵn) for

a randomly chosen end-user for a period of 30 days 

Fig. 2 (b) shows the dependency of change in electricity consumption on different 
privacy budgets (ϵn) for a randomly chosen end-user for a period of 30 days. It can be 
seen that the lower the privacy budget ϵn, the more change in electricity consumption 
may be observed. For example, when the privacy budget ϵn is set to 0.9, the electricity 
consumption pattern is almost the same as original with tiny deviations. Changes in 
electricity consumption may be clearly observed when the privacy budget ϵn is set 0.5, 



namely on day 9 and 15. The largest fluctuations in electricity consumption may be 
observed when the privacy budget ϵn=0.1. 

With the increasing scale factor b of Laplace distribution, the amount of noise 
increases. Taking into account that the sensitivity  changes dynamically 
depending on the measurements of electricity consumption, the ratio  may 
lead to a variable scale factor b, which is used in the Laplace mechanism to generate 
noise. Thus, if the end-users do not adjust the privacy budget ϵn, it may lead to an 
unexpected energy usage cost because of unexpected b. Let  denote the energy usage 
cost for the end-user n for a particular day, which is calculated based on the noisy 
consumption data as follows: 

(9) 
where  is the noisy consumption data for the end-user n for one day, which is 

calculated by injecting noise to the original data Cn. Let RE denote the relative error that 
reflects the difference between the original energy usage cost Pn and the energy usage 
cost , which is calculated based on the noisy consumption data. RE is calculated as 
follows: 

(10) 

Fig. 4 (a) shows the dependency of the relative error RE in the energy usage cost on 
the scale factor b for 5 randomly chosen end-users for one day. RE is calculated 10 times 
for each end-user and for each scale factor b, whereas the final RE is the maximum RE 
observed during 10 iterations. It can be seen that when the scale factor b is lower than 
0.008, the RE is lower than 10%, whereas the first time RE ≥ 10% is observed at b=0.008 
(RE = 16.5%). The first occurrence of the RE ≥ 60% is observed when the scale factor b 
is equal to 0.032 (RE = 65.09%). Finally, RE = 155.5% is observed when b=0.05. In other 
words, Fig. 4 (a) suggests possible scale factors b that can be used in the Laplace 
distribution to get expected level of noise. For example, if the end-user agrees to pay up 
to 10% more for the energy, the privacy budget ϵn needs to be adjusted in a way, so that 
∆fnmax/ϵn < 0.008. 

In this work, three levels of privacy are selected based on the results in Fig. 4 (a), 
namely Low Privacy (b = 0.008) with the RE ≤ 10%, Medium Privacy (b = 0.032) with 
the RE ≤ 60%, and High Privacy (b = 0.05) with the RE ≤ 100%. Thus, if the end-user 
selects the Medium Privacy level, an expected RE should not exceed 60%. 

Fig. 4 (b) shows the dependency of the absolute relative error in the energy usage 
cost on the level of privacy for a randomly chosen end-user for a period of 30 days. It 
can be seen that for the Low Privacy level, the amount of noise added is small, and RE 
does not exceed 10%. If the end-user selects the Medium Privacy level, the RE in the 
energy usage cost increases compared to the Low Privacy level, while it does not exceed 
60%. Finally, if the end-user needs the High Privacy level, the fluctuations in the energy 
usage cost are larger compared to the Medium and Low Privacy levels, whereas RE does 
not exceed 100%. Let us take as an example, the sensitivity ∆fnmax = 0.0055 on day 4. For 
the Low Privacy level, the privacy budget ϵn should be equal to 0.6875, so that ∆fnmax/ϵn 

= b = 0.008, with a resulting RE = 0.23%. Similarly, for the High Privacy level, ϵn is equal 
to 0.07 because the sensitivity ∆fnmax = 0.0035 on day 9. Thus, a large increase in the 
energy usage cost may be observed on day 9 for High Privacy level, whereas RE = 
99.36%. 



Figure 4 (a) Dependency of the relative error RE in the energy usage cost on the 
scale factor b for 5 randomly chosen end-users for one day (b) Dependency of the relative 
error RE in the energy usage cost on the level of privacy for a randomly chosen end-user 
for a period of 30 days 

The results show in more detail how the different variables (sensitivity, epsilon, and 
scale factor b) in the proposed privacy preserving scheme affect each other and the final 
energy cost for a user. Overall, the proposed scheme allows the user to opt out of sharing 
fine grained data about energy consumption with the provider in exchange for a higher 
energy cost. More importantly, the user can manage the level of privacy and the resulting 
cost increase. It is possible since the noise is added to the original end-user’s electricity 
consumption data based on the sensitivity  of a query function f and the privacy 
budget ϵn, which is controlled by the end-user. The ratio  determines the scale 
factor b that is used in the Laplace mechanism to generate controllable noise. The greater 
the scale factor b, the greater the noise is injected to the original data. Since the sensitivity 

 depends on the end-user’s electricity consumption data, the privacy budget needs 
to be adjusted in a way, so that the ratio leads to an accurate scale factor b, 
based on which the noise is generated. If the end-user does not adjust the privacy budget 
ϵn, it may lead to unexpected results in terms of the amount of noise added, as well as the 
energy usage cost. 

6. Conclusion

In this paper, a LDP-based data-sharing scheme for a smart utility environment is 
proposed. To ensure end-users’ privacy, a local deferentially private mechanism is 
proposed that takes into account end-users’ preferences regarding the level of privacy. 
End-users may adjust the required level of privacy (privacy budget) on daily, weekly, or 
monthly basis, thus controlling the trade-off between privacy and utility. The simulation 
results show that the proposed scheme may guarantee the required level of privacy with 
an expected error in the utility (energy usage cost). To ensure the required level of 
privacy, as well as to make sure that relative error in the energy usage cost does not 
exceed an expected level, the privacy budget needs to be tuned regularly and carefully. 

One of the possible directions for the future work is to design a mechanism that will 
automatically adjust the privacy budget based on the dynamically changing sensitivity, 
according to the end-user’s preferred level of privacy (low, medium, or high). 
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